2020—2021学年人教版八年级数学下册第18章 平行四边形 经典常考题专题训练(二)(word版含解析)

文档属性

名称 2020—2021学年人教版八年级数学下册第18章 平行四边形 经典常考题专题训练(二)(word版含解析)
格式 zip
文件大小 192.1KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-04-22 21:14:28

图片预览

文档简介

人教版八年级数学下册第18章
平行四边形
经典常考题专题训练(二)
1.如图,BD为平行四边形ABCD的对角线,∠ADB=90°,E是AB的中点,F是BD的中点,连接EF并延长交DC于点G,连接BG.
(1)求证:△BEF≌△DGF;
(2)证明四边形DEBG是菱形.
2.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.
(1)求证:四边形ANCM为平行四边形;
(2)若AD=4,AB=2,且MN⊥AC,求DM的长.
3.已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1,d2,d3,且d1=d3=2,d2=3.我们把四个顶点分别在l,m,n,k这四条平行线上的四边形称为“线上四边形”.
(1)如图1,正方形ABCD为“线上四边形”,BE⊥l于点E,EB的延长线交直线k于点F,求正方形ABCD的边长.
(2)如图2,菱形ABCD为“线上四边形”且∠ADC=60°,△AEF是等边三角形,点E在直线k上,连接DF,且直线DF分别交直线l、k于点G、M,求证:EC=DF.
4.如图,四边形ABCD的对角线AC⊥BD于点E,点F为四边形ABCD外一点,且∠FCA=90°,BC平分∠DBF,∠CBF=∠DCB.
(1)求证:四边形DBFC是菱形;
(2)若AB=BC,∠F=45°,BD=2,求AC的长.
5.如图,在?ABCD中,DE平分∠ADB,交AB于点E,BF平分∠CBD,交CD于点F.
(1)求证:DE=BF;
(2)若AD=BD,求证:四边形DEBF是矩形.
6.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.
(1)求证:△DOE≌△BOF;
(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.
7.如图,矩形ABCD中,AB=BC,在边AB上截取BE,使得BE=BC,连接CE,作DF⊥EC于点F,连接BF并延长交AD于点G,连接DE.
(1)求证:DE平分∠AEC;
(2)若AD=,求出DG的长.
8.如图,矩形ABCD的对角线AC、BD交于点O,过点O的直线EF与AB、CD分别交于点E、F,连接DE、BF.
(1)求证:四边形BEDF是平行四边形;
(2)若AD=4,AC=8,且OF=CF,求四边形BEDF的面积.
9.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.
(1)如图1,当点E与点D重合时,AG= 
 ;
(2)如图2,当点E在线段CD上时,DE=2,求AG的长;
(3)若AG=,请直接写出此时DE的长.
10.如图,在菱形ABCD中,将对角线AC分别向两端延长到点E和F,使得AE=CF.连接DE,DF,BE,BF.
求证:四边形BEDF是菱形.
11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.
(1)求证:四边形OEFG是矩形;
(2)若AD=10,EF=4,求OE和BG的长.
12.如图,?ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP∥AC.CP∥BD.
(1)求证:四边形ABCD是菱形;
(2)若AC=4,BD=6,求OP的长.
13.如图,在菱形ABCD中,E为对角线BD上一点,且AE⊥AB,连接CE.
(1)求证:∠ECB=90°;
(2)若AE═ED=1时,求菱形的边长.
14.如图,在矩形ABCD中,AB=8,BC=16,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是每秒1个单位,连接PQ、AQ、CP.设点P、Q运动的时间为t秒.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t=6时,判断四边形AQCP的形状,并说明理由.
15.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.
(1)求证:四边形BNDM是菱形;
(2)若BD=24,MN=10,求菱形BNDM的周长.
参考答案
1.证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠FEB=∠FGD,∠FBE=∠FDG,
∵F是BD的中点,
∴BF=DF,
在△BEF和△DGF中,,
∴△BEF≌△DGF(AAS);
(2)由(1)得:△BEF≌△DGF,
∴BE=DG,
∵BE∥DG,
∴四边形DEBG是平行四边形,
∵∠ADB=90°,E是AB的中点,
∴DE=AB=BE,
∴四边形DEBG是菱形.
2.(1)证明:∵在矩形ABCD中,O为对角线AC的中点,
∴AD∥BC,AO=CO,
∴∠OAM=∠OCN,∠OMA=∠ONC,
在△AOM和△CON中,

∴△AOM≌△CON(AAS),
∴AM=CN,
∵AM∥CN,
∴四边形ANCM为平行四边形;
(2)解:∵在矩形ABCD中,AD=BC,
由(1)知:AM=CN,
∴DM=BN,
∵四边形ANCM为平行四边形,MN⊥AC,
∴平行四边形ANCM为菱形,
∴AM=AN=NC=AD﹣DM,
∴在Rt△ABN中,根据勾股定理,得
AN2=AB2+BN2,
∴(4﹣DM)2=22+DM2,
解得DM=.
3.解:(1)如图1,∵l∥m∥n∥k,BE⊥l,
∴BE⊥k,BE⊥m,BE⊥n,
∴∠AEB=∠BFC=90°,BE=5,BF=2,
∴∠CBF+∠BCF=90°,
∵正方形ABCD为“线上四边形”,
∴AB=BC,∠ABC=90°,
∴∠ABE+∠CBF=90°,
∴∠ABE=∠BCF,
∴△ABE≌△BCF(AAS),
∴FC=BE=5,
∴BC===;
(2)如图2,连接AC,
∵四边形ABCD是菱形,
∴AD=CD,
∵∠ADC=60°,
∴△ADC是等边三角形,
∴AD=AC,∠CAD=60°,
∵△AEF是等边三角形,
∴AE=AF,∠EAF=60°,
∴∠EAF=∠CAD,
∴∠EAC=∠DAF,
∴△EAC≌△FAD(SAS),
∴EC=DF.
4.(1)证明:∵AC⊥BD,∠FCA=90°,∠CBF=∠DCB.
∴BD∥CF,CD∥BF,
∴四边形DBFC是平行四边形;
∵BC平分∠DBF,
∴∠CBF=∠CBD,
∵∠CBF=∠DCB,
∴∠CBD=∠DCB,
∴CD=BD,
∴四边形DBFC是菱形;
(2)解:∵四边形DBFC是平行四边形,
∴CF=BD=2,
∵AB=BC,AC⊥BD,
∴AE=CE,
作CM⊥BF于M,如图:
∵BC平分∠DBF,
∴CE=CM,
∵∠F=45°,
∴△CFM是等腰直角三角形,
∴CM=CF=,
∴AE=CE=,
∴AC=2.
5(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠ADB=∠CBD,
∵DE平分∠ADB,BF平分∠CBD,
∴∠EDB=∠ADB,∠DBF=∠CBD,
∴∠EDB=∠DBF,
∴DE∥BF,
又∵AB∥CD,
∴四边形DEBF是平行四边形.
∴DE=BF.
(2)∵AD=BD,DE平分∠ADB,
∴DE⊥AB,
又∵四边形DEBF是平行四边形,
∴四边形DEBF是矩形.
6.(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,DO=BO,
∴∠EDO=∠FBO,
又∵EF⊥BD,
∴∠EOD=∠FOB=90°,
在△DOE和△BOF中,

∴△DOE≌△BOF(ASA);
(2)解:∵由(1)可得,ED∥BF,ED=BF,
∴四边形BFDE是平行四边形,
∵EF⊥BD,
∴四边形BFDE是菱形,
根据AB=6,AD=8,设AE=x,可得BE=ED=8﹣x,
在Rt△ABE中,根据勾股定理可得:BE2=AB2+AE2,
即(8﹣x)2=x2+62,
解得:,
∴,
∴四边形BFDE的周长=.
7.解:(1)∵四边形ABCD是矩形,
∴AB=CD,AB∥DC,∠ABC=90°,
∵BC=BE,
∴CE=BC,
∵AB=BC,
∴CD=CE,∴∠CDE=∠CED,
∵AB∥CD,
∴∠CDE=∠AED,
∴∠AED=∠DEC,
∴DE平分∠AEC;
(2)∵BC=BE,∠CBE=90°,
∴∠BCE=∠BEC=45°,
∵CD∥AB,
∴∠DCE=∠BEC=45°,
∵DF⊥CE,
∴∠CDF=45°,
∴DF=CF,
∴CD=DF,
∵AB=CD,AB=,BC=BE,
∴BE=DF=CF=BC,
∵∠ADC=90°,
∴∠FDG=45°,
∴∠BEF=∠EDF,
∵BC=CF,∠BCF=45°,
∴∠CBF=∠CFB=67.5°,
∴∠EBF=90°﹣67.5°=22.5°,
∠DFG=180°﹣67.5°﹣90°=22.5°,
∴∠EBF=∠DFG,
在△DFG和△EBF中,
∴△DFG≌△EBF(ASA),
∴DG=EF,
∵EF=CE﹣CF=AB﹣BC=,
∴DG=2.
8.解:(1)在矩形ABCD中,
OB=OD,CD∥AB,
∴∠FDO=∠EBO,
在△OFD与△OEB中,

∴△OFD≌△OEB(AAS),
∴OF=OE,
∵OB=OD,
∴四边形BEDF是平行四边形.
(2)在矩形ABCD中,
AD=4,AC=8,
∴AD=OA=OD=4,
∴△AOD是等边三角形,
∴∠DCA=30°,∠DOA=60°,
∵OF=CF,
∴∠FOC=∠FCO=30°,
∴∠DOF=90°,
∴四边形BEDF是菱形,
在Rt△DOF中,
∠FDO=30°,OD=4,
∴OF=,
∵AC=BD=8,
∴菱形BEDF的面积为:BD?2OF=BD?OF=
9.解:(1)如图1,连接CG,
∵四边形ABCD和四边形EBGF是正方形,
∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,
∴∠CBG=45°,
∴∠CBG=∠CBD,
∵BC=BC,
∴△CBD≌△CBG(SAS),
∴∠DCB=∠BCG=90°,DC=CG=5,
∴G,C,D三点共线,
∴AG===5;
故答案为:5;
(2)如图2,过点G作GK⊥AB,交AB的延长线于K,
∵DE=2,DC=5,
∴CE=3,
∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,
∴∠EBC=∠GBK,
∵BE=BG,∠K=∠BCE=90°,
∴△BCE≌△BKG(AAS),
∴CE=KG=3,BC=BK=5,
∴AK=10,
由勾股定理得:AG==;
(3)分三种情况:
①当点E在CD的延长线上时,如图3,同理知△BCE≌△BKG(AAS),
∴BC=BK=5,
∵AG=,
由勾股定理得:KG==,
∴CE=KG=,此种情况不成立;
②当点E在边CD上时,如图4,
同理得:DE=;
③当点E在DC的延长线上时,如图5,
同理得CE=GK=,
∴DE=5+=,
综上,DE的长是或.
10.证明:方法一:
∵四边形ABCD是菱形,
∴BC=CD,∠DCA=∠BCA,
∴∠DCF=∠BCF,
∵CF=CF,
∴△CDF≌△CBF(SAS),
∴DF=BF,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠DAE=∠BCF,
∵AE=CF,DA=BC,
∴△DAE≌△BCF(SAS),
∴DE=BF,
同理可证:△DCF≌△BAE(SAS),
∴DF=BE,
∴四边形BEDF是平行四边形,
∵DF=BF,
∴平行四边形BEDF是菱形.
方法二:∵ABCD为菱形,
∴AB=BC=CD=AD,∠DAC=∠DCA=∠BCA=∠BAC,
∴∠EAD=∠EAB=∠FCD=∠FCB,
所以就能得到四个三角形全等,
所以四条边相等,
所以四边形BEDF为菱形.
方法三:
如图,连接BD交AC于点O,
∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO,
又∵AE=CF,
∴OE=OF,
∴四边形BEDF是菱形.
11.解:(1)∵四边形ABCD是菱形,
∴OB=OD,
∵E是AD的中点,
∴OE是△ABD的中位线,
∴OE∥FG,
∵OG∥EF,
∴四边形OEFG是平行四边形,
∵EF⊥AB,
∴∠EFG=90°,
∴平行四边形OEFG是矩形;
(2)∵四边形ABCD是菱形,
∴BD⊥AC,AB=AD=10,
∴∠AOD=90°,
∵E是AD的中点,
∴OE=AE=AD=5;
由(1)知,四边形OEFG是矩形,
∴FG=OE=5,
∵AE=5,EF=4,
∴AF==3,
∴BG=AB﹣AF﹣FG=10﹣3﹣5=2.
12.解:(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAC=∠BCA,
∵AC平分∠BAD,
∴∠BAC=∠DAC,
∴∠BCA=∠BAC,
∴AB=BC,
∴平行四边形ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠DOC=90°,
∵DP∥AC,CP∥BD,
∴四边形DOCP是平行四边形,
∵∠DOC=90°,
∴平行四边形DOCP是矩形,
∴OP=CD,
∵AC=4,BD=6,
∴OC=2,OD=3,
∴CD==,
∴OP=CD=.
答:OP的长为.
13.证明:(1)∵AE⊥BA,
∴∠BAE=90°,
∵四边形ABCD是菱形,
∴AB=BC,∠ABD=∠CBD,
又∵BE=BE,
∴△ABE≌△CBE(SAS),
∴∠BAE=∠BCE=90°;
(2)如图,连接AC交BD于H,
∵四边形ABCD是菱形,
∴AB=AD,AC⊥BD,BH=DH,AH=CH,
∴∠ABD=∠ADB,
∵AE═ED=1,
∴∠DAE=∠EDA,
∴∠DAE=∠ADE=∠ABD,
∵∠DAE+∠ADE+∠BAE+∠ABD=180°,
∴∠DAE=∠ADE=∠ABD=30°,
∴BE=2AE=2,
∴BD=BE+DE=3,
∴BH=DH=,
∵∠ABD=30°,AH⊥BD,
∴AB=2AH,BH=AH,
∴AH=,AB=2AH=,
∴菱形的边长为.
方法二,同理可求∠ABE=30°,
∴BE=2AE=2,
∴AB==.
14.解:(1)∵在矩形ABCD中,AB=8,BC=16,
∴BC=AD=16,AB=CD=8,
由已知可得,BQ=DP=t,AP=CQ=16﹣t,
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=16﹣t,
解得:t=8,
∴当t=8s时,四边形ABQP为矩形;
(2)四边形AQCP为菱形;理由如下:
∵t=6,
∴BQ=6,DP=6,
∴CQ=16﹣6=10,AP=16﹣6=10,
∴AP=CQ,AP∥CQ,
∴四边形AQCP为平行四边形,
在Rt△ABQ中,AQ===10,
∴AQ=CQ,
∴平行四边形AQCP为菱形,
即当t=6时,四边形AQCP为菱形.
15.(1)证明:∵AD∥BC,
∴∠DMO=∠BNO,
∵MN是对角线BD的垂直平分线,
∴OB=OD,MN⊥BD,
在△MOD和△NOB中,,
∴△MOD≌△NOB(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BNDM是平行四边形,
∵MN⊥BD,
∴四边形BNDM是菱形;
(2)解:∵四边形BNDM是菱形,BD=24,MN=10,
∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,
在Rt△BOM中,由勾股定理得:BM===13,
∴菱形BNDM的周长=4BM=4×13=52.