不等式的性质(1)

文档属性

名称 不等式的性质(1)
格式 zip
文件大小 219.9KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2012-03-01 16:19:19

图片预览

文档简介

(共25张PPT)
由a+2=b+2, 能得到a=b?
由0.5a=0.5b, 能得到a=b?
由 -2a= -2b, 能得到a=b?
由a-2=b-2, 能得到a=b?
等式基本性质1:
等式的两边都加上(或减去)同一个整式,等式仍旧成立
等式基本性质2:
等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成立
如果a=b,那么a±c=b±c
如果a=b,那么ac=bc或 (c≠0),
不等式是否具有类似的性质呢?
如果 7 > 3
那么 7+5 ____ 3+ 5 , 7 -5____3-5
你能总结一下规律吗?


如果-1< 3,
那么-1+2____3+2, -1- 4____3 - 4
<
<
+ C
-C
(或________)
如果_____,
那么_______
如果a>b,
那么a±c>b±c
a>b
a+c>b+c
a-c>b-c
不等式基本性质1:不等式的两边都加上(或减去)同一个整式,
如果____,那么_________.
不等号的方向不变。
a>b
a±c>b±c
_________________
7÷5 ____ 3÷ 5 ,
7 ÷ (-5)____3÷ (-5)
不等式还有什么类似的性质呢?
如果 7 > 3
那么 7×5 ____ 3× 5 ,
7 ×(-5)____3×(-5),
你能再总结一下规律吗?


如果-1< 3,
那么-1×2____3×2,
-1×(- 4)____3×( - 4),
-1÷2____3÷2,
-1÷ (- 4)____3÷ ( - 4)


<
<
<
<
×3
÷3
(或 )
如果_________,
那么_______
a>b且c>0
ac>bc
不等式基本性质2:不等式的两边都乘以(或除以)同一个____,不等号的方向____。
不等式基本性质3:不等式的两边都乘以(或除以)同一个____,不等号的方向____。
如果________,那么______________
不变
正数
a>b,c>0
ac>bc (或 )
负数
改变
如果________,那么______________
a>b,c<0
ac今天学的是不等式的三个基本性质:
不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或式子),不等号方向不变。
不等式基本性质2:
如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式基本性质3:
如果a>b,c<0 那么ac例1:
判断下列各题的推导是否正确?为什么(学生口答)
(1)因为7.5>5.7,所以-7.5<-5.7;
(2)因为a+8>4,所以a>-4;
(3)因为4a>4b,所以a>b;
(4)因为-1>-2,所以-a-1>-a-2;
(5)因为3>2,所以3a>2a.
答:

(1)正确,根据不等式基本性质3.
(2)正确,根据不等式基本性质1.
(3)正确,根据不等式基本性质2.
(4)正确,根据不等式基本性质1.
(5)不对,应分情况逐一讨论.
当a>0时,3a>2a.(不等式基本性质2)
当 a=0时,3a=2a.
当a<0时,3a<2a.(不等式基本性质3)
例2:设a>b,用“<”或“>”填空并口答是根据哪一条不等式基本性质。
(1) a - 3____b - 3;
(2)a÷3____b÷3
(3) 0.1a____0.1b;
(4) -4a____-4b
(5) 2a+3____2b+3;
(6) (m2+1) a ____ (m2+1)b (m为常数)






练习: 已知a<0,用“<”或“>”号填空:
(1)a+2 ____2; (2)a-1 _____-1; (3)3a______ 0;
(4)-a/4______0; (5)a2_____0; (6)a3______0
(7)a-1______0; (8)|a|______0.
答:
(1)a+2<2,根据不等式基本性质1.
(2)a-1<-1,根据不等式基本性质1.
(3)3a<0,根据不等式基本性质2.
(5)因为a<0,两边同乘以a<0,
由不等式基本性质3,得a2>0.
(6)因为a<0,两边同乘以a2>0,
由不等式基本性质2,得a3<0.
(7)因为a<0,两边同加上-1,由不等式基本性质1,
得a-1<-1.又已知,-1<0,所以 a-1<0.
(8)因为a<0,所以a≠0,所以|a|>0.
(4) -a/4>0,根据不等式基本性质3.
填空:
(1) ∵ 2a < 3a , ∴a是____数
(3) ∵ ax < a 且 x > 1 ,
∴a是____数
(2) ∵ , ∴a是____数



例3:将下列不等式化成x > a或 x < a 的形式
(1) x-5 > -1
(2) -2x > 4
(3) 7x < 6x -6
解:根据不等式的基本性质1,不等式两边都加上5得x > 4
解:根据不等式的基本性质3 , 不等式两边都除以-2得, x < -2
解:根据不等式的基本性质1,不等式两边都减去6x,得x < -6
思考:
已知不等式2a+3b>3a+ 2b,试比较a、b的大小。
解:根据不等式的基本性质1,不等式两边都减去(2a+2b),得
2a+3b- (2a+2b)>3a+ 2b - (2a+2b)
2a+3b-2a - 2b>3a+ 2b - 2a - 2b
b>a
课堂练习
1.按下列要求,写出正确的不等式:
(1)由-2<-1,两边都加-a;
(2)由7>5,两边都乘以不为零的-a.
-2-a<-1-a
若a>0,则-a<0,故-7a<-5a;
若a<0,则-a>0,故-7a>-5a;
1、判断正误:
2、 a是一个整数,比较a与3a的大小
(1)如果a>b,那么ac>bc。
(2)如果a>b,那么ac2>bc2。
(3)如果ac2>bc2, 那么a>b。
×
×
利用取特殊值法解不等式问题。
(1)如果a<b<0那么一定成立的不等式是( )
(B) ab<1
(2)若0<m<1,试比较 与 m 的大小.
D
今天学的是不等式的三个基本性质:
不等式的基本性质1:
如果a >b,那么a±c>b±c.就是说,不等式两边都加上 (或减去)同一个数(或式子),不等号方向不变。
不等式基本性质2:
如果a >b,c > 0 ,那么 ac>bc(或 ) 就是说不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式基本性质3:
如果a>b,c<0 那么ac小结:
①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;
②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号.
③ 补充两点:
(1)如果a>b,那么b<a 。
(2)如果a>b, b >c,那么 a > c。
作业:
教科书第134页
习题9.1第4、5、7题