2020_2021学年新教材高中数学第九章统计9.2用样本估计总体教案(4课时打包)新人教A版必修第二册

文档属性

名称 2020_2021学年新教材高中数学第九章统计9.2用样本估计总体教案(4课时打包)新人教A版必修第二册
格式 zip
文件大小 2.3MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-04-27 10:28:21

文档简介

9.2.3
总体集中趋势的估计
本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.2.3
总体集中趋势的估计》,本节课通过对反映样本数据集中趋势量;平均数、众数、中位数的回顾,进一步学习在频率分布直方图中对三个量的算法,同时加深对它们的理解和应用。进一步体会用样本估计总体的思想与方法。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
课程目标
学科素养
A.结合实例,能用样本估计总体的集中趋势参数(众数、中位数、平均数).
B.会求样本数据的众数、中位数、平均数.
C.理解集中趋势参数的统计含义.
1.数学建模:在具体情境中运用众数、中位数、平均数
2.逻辑推理:运用众数、中位数、平均数进行判断
3.数学运算:
计算众数、中位数、平均数
4.数据分析:众数、中位数、平均数的含义
1.教学重点:会求样本数据的众数、中位数、平均数.
2.教学难点:理解集中趋势参数的统计含义.
多媒体
教学过程
教学设计意图
核心素养目标
一、温故知新
1、定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
2、计算一组n个数据的第p百分位数的步骤:
第1步,按从小到大排列原始数据.
第2步,计算i=n×p%.
第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为
第i项与第(i+1)项数据的平均数.
3、根据频率分布直方图(频率分布表)计算样本数据的百分位数:首先要理解频率分布直方图中各组数据频率的计算,其次估计百分位数在哪一组,再应用方程的思想方法,设出百分位数,解方程可得.
众数:在一组数据中,出现次数最多的数据.
中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数).
做一做
1.判断下列说法是否正确.(正确的打“√”,错误的打“×”)
(1)改变一组数据中的一个数,则这些数据的平均数一定会改变.(  )
(2)改变一组数据中的一个数,则其中位数也一定会改变.(  )
(3)在频率分布直方图中,众数是最高矩形中点的横坐标.(  )
√;√;×
2、求下列各组数据的众数
(1)、1
,2,3,3,3,5,5,8,8,8,9,9众数是:3和8
(2)、1
,2,3,3,3,5,5,8,8,9,9
众数是:3
3、求下列各组数据的中位数
(1)、1
,2,3,3,3,4,6,8,8,8,9,9中位数是:5
(2)1
,2,3,3,3,4,8,8,8,9,9中位数是:4
4.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:
成绩(米)1.501.601.651.701.751.801.851.90人数23234111
分别求这些运动员成绩的众数,中位数与平均数

解:在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75.上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的一个数据,即这组数据的中位数是1.70;
答:17名运动员成绩的众数、中位数、平均数依次是1.75(米)、1.70(米)、1.69(米)。
这组数据的平均数是
二、探究新知
为了了解总体的情况,前面我们研究了如何通过样本的分布规律估计总体的分布规律,但有时候,我们可能不太关心总体的分布规律,而更关注总体取值在某一方面的特征,例如,对于某县今年小麦的收成情况,我们可能会更关注该县今年小麦的总产量或平均每公顷的产量,而不是产量的分布;对于一个国家国民的身高情况,我们可能会更关注身高的平均数或中位数,而不是身高的分布;等等.
在初中的学习中我们已经了解到,平均数、中位数和众数等都是刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势。
下面我们通过具体实例进一步了解这些量的意义,探究它们之间的联系与区别,并根据样本的集中趋势估计总体的集中趋势.
例1.
利用下表中100户居民用户的月均用水量的调查数据,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.
9.0
13.6
14.9
5.9
4.0
7.1
6.4
5.4
19.4
2.0
2.2
8.6
13.8
5.4
10.2
4.9
6.8
14.0
2.0
10.5
2.1
5.7
5.1
16.8
6.0
11.1
1.3
11.2
7.7
4.9
2.3
10.0
16.7
12.0
12.4
7.8
5.2
13.6
2.4
22.4
3.6
7.1
8.8
25.6
3.2
18.3
5.1
2.0
3.0
12.0
22.2
10.8
5.5
2.0
24.3
9.9
3.6
5.6
4.4
7.9
5.1
24.5
6.4
7.5
4.7
20.5
5.5
15.7
2.6
5.7
5.5
6.0
16.0
2.4
9.5
3.7
17.0
3.8
4.1
2.3
5.3
7.8
8.1
4.3
13.3
6.8
1.3
7.0
4.9
1.8
7.1
28.0
10.2
13.8
17.9
10.1
5.5
4.6
3.2
21.6
所以估计全市居民用户的月均用水量约为8.79t,其中位数约为6.6t.
跟踪练习1.
小明用统计软件计算了100户居民用水量的平均数和中位数,但在录入数据不小心把一个数据7.7录成了77.请计算录入数据的平均数和中位数.
思考:并与真实的样本平均数和中位数作比较。哪个量的值变化更大?你能解释其中的原因吗?
平均数由原来的8.79t变为9.483t,中位数没有变化.这是因为样本平均数与每一个样本数据有关,样本中的任何一个数据的改变会引起平均数的改变;但中位数只利用了样本数据中间位置的一个或两个值,并未利用其他数据,所以不是任何一个样本数据的改变都会引起中位数的改变,因此,与中位数较,平均数反映出样本数据中的更多信息,对样本中的极端值更加敏感.
平均数和中位数都描述了数据的集中趋势,它们的大小关系和数据分布的形态有关.在下图的三种频率分布直方图形态中,平均数和中位数的大小存在什么关系?
例2.某学校要定制高一年级的校服,学生根据厂家提供的参考身高选择校服规格,据统计,高一年级女生需要不同规格校服的频数如下表所示,
校服规格155160165170175合计频数39641679026386
如果用一个量来代表该校高一年级女生所需校服的规格,那么在中位数、平均数和数中,哪个量比较合适?试讨论用上表中的数据估计全国高一年级女生校服规格的合理性.
分析:虽然校服规格是用数字表示的,但它们事实上是几种不同的类别,对于这样的分类数据,用众数作为这组数据的代表比较合适.
解:为了更直观地观察数据的特征,我们用条形图来表示表中的数据(下图)可以发现,选择校服规格为“165”的女生的频数最高,所以用众数165作为该校高一年级女生校服的规格比较合适.
由于全国各地的高一年级女生的身高存在一定的差异,所以用一个学校的数据估计全国高一年级女生的校服规格不合理.
众数、中位数和平均数的比较
名称优点缺点平均数与中位数相比,平均数反映出样本数据中更多的信息,对样本中的极端值更加敏感任何一个数据的改变都会引起平均数的改变.数据越“离群”,对平均数的影响越大中位数不受少数几个极端数据(即排序靠前或靠后的数据)的影响对极端值不敏感众数体现了样本数据的最大集中点众数只能传递数据中的信息的很少一部分,对极端值不敏感
探究:样本的平均数、中位数和众数可以分别作为总体的平均数、中位数和众数的估计,但在某些情况下我们无法获知原始的样本数据,例如,我们在报纸、网络上获得的往往是已经整理好的统计表或统计图,这时该如何估计样本的平均数、中位数和众数?
在频率分布直方图中,损失了大量的原始数据,只知道分组和每组的频率,我们无法知道每个组内的数据是如何分布的,此时,通常假设它们在组内均匀分布,这样就可以获得样本的平均数、中位数和众数的近似估计,进而估计总体的平均数、中位数和众数.
你能以下图居民用水的频率分布直方图提供的信息,估计出样本的平均数、中位数和众数吗?
因为样本平均数可以表示为数据与它的频率的乘积之和,所以在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.如图所示,可以测出图中每个小矩形的高度,于是平均数的近似值为
这个结果与根据原始数据计算的样本平均数8.79相差不大
根据中位数的意义,在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数.因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等
这个结果与根据原始数据求得的中位数6.6相差不大.
由于0.077×3=0.231,(0.077+0.107)×3=0.552.
因此中位数落在区间[4.2,7.2)内.
设中位数为x,由0.077×3+0.107×(x-4.2)=0.5得到x≈6.71.
因此,中位数约为6.71,如图所示.
在频率分布直方图中,月均用水量在区间[4.2,7.2)内的居民最多,可以将这个区间的中点5.7作为众数的估计值,如图所示,众数常用在描述分类型数据中,在这个实际问题中,众数“5.7”让我们知道月均用水量在区间[4.2,7.2)内的居民用户最多,这个信息具有实际意义。
在频率分布直方图中,我们无法知道每个组内的数据是如何分布的,此时,通常假设它们在组内均匀分布,这样就可以获得样本的平均数、中位数和众数的近似估计,进而估计总体的平均数、中位数和众数.
跟踪训练
(2)众数为75.设中位数为x,由于前三个矩形面积之和为0.35,第四个矩形面积为0.3,0.35+0.3>0.5,因此中位数位于第四个矩形内,得0.3+0.03(x-70)=0.5,所以x=75.
2.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)求这次测试数学成绩的众数;
(2)求这次测试数学成绩的中位数
(3)求这次测试数学成绩的平均数.
(2)设中位数为x,由图知前三个矩形面积之和为0.4,
第四个矩形面积为0.3
0.3+0.4>0.5,因此中位数位于第四个矩形内
得:0.4+0.03(x-70)=0.5,所以x≈73.3.
解:由题干图知这次数学成绩的平均数为:×0.005×10+×0.015×10
+×0.02×10+×0.03×10+×0.025×10+×0.005×10=72.
(4)若例3条件不变,求80分以下的学生人数.
[40,80)分的频率为:(0.005+0.015+0.020+0.030)×10=0.7,
所以80分以下的学生人数为80×0.7=56.
由回顾知识出发,提出问题,让学生感受到对反映样本数字集中趋势量;平均数、众数、中位数学习的重要性。发展学生数学抽象、直观想象和逻辑推理的核心素养。
通过具体问题,让学生感受反映样本数字集中趋势量;平均数、众数、中位数学习解决实际问题中的运用,发展学生数学抽象、逻辑推理的核心素养。
通过实例分析,让学生掌握反映样本数字集中趋势量;平均数、众数、中位数的计算方法,并熟悉的应用,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。
三、达标检测
1.已知某市2019年全年空气质量等级如下表所示
根据表中的数据,估计该市2019年全年空气质量指数的平均数、中位数和第80百分位(注:已知该市属于“严重污染”等级的空气质量指数不超过400)
2.某工厂人员及工资构成如下:
人员经理管理人员高级技工工人学徒合计日工资2200250220200100人数16510123合计22001500110020001006900
(1)指出这个问题中日工资的众数、中位数、平均数
(2)这个问题中,工资的平均数能客观地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为220,平均数为300。
因平均数为300,由表格中所列出的数据可见,只有经理在平均数以上,其余的人都在平均数以下,故用平均数不能客观真实地反映该工厂的工资水平。
利用样本数字特征进行决策时的两个关注点
(1)平均数与每一个数据都有关,可以反映更多的总体信息,但受极端值的影响大;中位数是样本数据所占频率的等分线,不受几个极端值的影响;众数只能体现数据的最大集中点,无法客观反映总体特征.
(2)当平均数大于中位数时,说明数据中存在许多较大的极端值.
3.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)求这次测试数学成绩的众数;
(2)求这次测试数学成绩的中位数;
(3)求这次测试数学成绩的平均分.
解析: (1)由图知众数为=75.
(2)由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.
(3)由图知这次数学成绩的平均分为:
×0.005×10+×0.015×10+×0.02×10+×0.03×10+×0.025×10+×0.005×10=72.
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学抽象、逻辑推理、数学运算、数学建模的核心素养。
四、小结
平均数、中位数和众数的意义
1.平均数:
平均数是指在一组数据中所有数据之和再除以数据的个数,特征:平均数的大小与一组数据里的每个数均有关系,其中任何数据的变动都会相应引起平均数的变动。
2.中位数:
将一组数据从小到大(或从大到小)排列,中间的数称为这组数据的中位数。如果是奇数个数据,中间的数就为这组数据的中位数,如果是偶数个数据,中间两个数的平均数为这组数据的中位数,特征:中位数仅与数据的排列有关,部分数据的变动对中位数可能没有影响。
3.众数:
一组数据中出现次数最多的数值叫众数,有时在一组数中有几个,特征:众数着眼于对各数据出现频率的考察,其大小只与这组数据的部分数据有关。
平均数、中位数、众数的联系
众数、中位数及平均数都是描述一组数据的集中趋势的量,其中以平均数最为重要,其应用也最为广泛。
五、课时练
通过总结,让学生进一步巩固本节所学内容,提高概括能力。
本节课通过对反映样本数据集中趋势量;平均数、众数、中位数的回顾,进一步学习在频率分布直方图中对三个量的算法,同时加深对它们的理解和应用教学中要注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。9.2.4
总体离散程度的估计
本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.2.4
总体离散程度的估计》,本节课通过对反映样本数据离散程度的估计量;极差、方差与标准差的回顾,进一步研究和学习用样本的数字特征估计总体的数字特征以及初步应用,有利于进一步完善对统计学认识的系统性,加深对统计学思想方法的理解。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
课程目标
学科素养
A.会用样本的极差、方差与标准差估计总体。
B.
通过用样本的数字特征估计总体的数字特征的研究,渗透统计学的思想和方法。
C.培养学生收集数据、分析数据、归纳和整理数据,增强学习的积极性。
1.数学建模:在具体情境中运用极差、方差与标准差
2.逻辑推理:运用极差、方差与标准差进行推断
3.数学运算:极差、方差与标准差的计算
4.数据分析:运用极差、方差与标准差分析判断
1.教学重点:方差、标准差的计算方法。
2.教学难点:
如何利用样本的方差、标准差对总体数据作出分析及判断数据的稳定性。
多媒体
教学过程
教学设计意图
核心素养目标
一、温故知新
一、温故知新
(1)众数
①定义:一组数据中出现次数最多的数据(即频率分布最大值所对应的样本数据)称为这组数据的众数.
②特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.
(2)中位数
①定义:一组数据按从小到大(或从大到小)的顺序排成一列,处于最中间的一个数据(当数据个数是奇数时)或最中间两个数据的平均数(当数据个数是偶数时)称为这组数据的中位数.
②特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.
(3)平均数
①定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,xn的平均数为9.2.2总体百分位数的估计
本节《普通高中课程标准数学教科书-必修二(人教A版)第九章《9.2.2总体百分位数的估计》,本节课通过探究栏目提出“居民生活用水定额管理问题”,在制定水价问题中提出,总体百分位数的估计的概念,让学生尝试运用总体百分位数的估计来解决实际问题,体会总体百分位数的估计的意义和作用,体会用样本估计总体的思想与方法。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。
课程目标
学科素养
A.
通过学习和应用百分位数,重点培养数据分析素养、数学运算和数学建模素养.
B.
掌握求一组数据的百分位的基本步骤:
C.感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
1.数学建模:在具体情境中运用百分位数解决问题;
2.逻辑推理:求总体百分位数的基本步骤;
3.数学运算:会求总体百分位数
4.数据分析:体会百分位数的意义
1.教学重点:理解百分位数的概念及其简单应用
2.教学难点:掌握求一组数据的百分位的基本步骤:
多媒体
教学过程
教学设计意图
核心素养目标
一、温故知新
1.如何画频率分布直方图的步骤
频率分布直方图的性质
(1)因为小矩形的面积=组距×
=频率,所以各小矩形的面积表示相应各组的频率.
这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.
(2)在频率分布直方图中,各小矩形的面积之和等于1.
(3)
.=样本量.
(4)在频率分布直方图中,各矩形的面积之比等于频率之比,各矩形的高度之比也等于频率之比.
2.其他统计图表,会读图、识图
统计图表主要应用扇形图直观描述各类数据占总数的比例条形图和直方图直观描述不同类别或分组数据的频数和频率折线图描述数据随时间的变化趋势
条形统计图、扇形统计图和折线统计图的区别与联系
统计图区别联系条形统计图(1)直观反映数据分布的大致情况
(2)清晰地表示各个区间的具体数目
(3)会丢失数据的部分信息在同一
组数据
的不同
统计图
表中,
计算出
相应组
的频数、
频率应
该相等.扇形统计图(1)清楚地看出数据分布的总体趋势及各部分所占总体的百分比
(2)丢失了原来的具体数据折线统计图(1)表示数据的多少和数量增减变化情况
(2)制作类似于函数图象的画法,侧重体现数据的变化规律
二、探究新知
前面我们用频率分布表、频率分布直方图描述了居民用户月均用水量的样本数据,通过对图表的观察与分析,得出了一些样本数据的频率分布规律,并由此推测了该市全体居民用户月均用水量的分布情况,得出了“大部分居民用户的月均用水量集中在一个较低值区域”等推断,接下来的问题是,如何利用这些信息,为政府决策服务呢?下面我们对此进行讨论.
问题:
如果该市政府希望使80%的居民用户生活用水费支出不受影响,根据9.2.1节中100户居民用户的月均用水量数据,你能给市政府提出确定居民用户月均用水量标准的建议吗?
根据市政府的要求确定居民用户月均用水量标准,就是要寻找一个数a,使全市居民用户月均用水量中不超过a的占80%,大于a的占20%.
把得到的100个样本数据按从小到大排序,得到第80个和81个数据分别为13.6和13.8.可以发现,区间(13.6,13.8)内的任意一个数,都能把样本数据分成符合要求的两部分.一般地,我们取这两个数的平均数()13.6+13.8)/2=13.7,并称此数为这组数据的第80百分位数(percentile),
或80%分位数.
根据样本数据的第80百分位数,我们可以估计总体数据的第80百分位数为13.7左右.由于样本的取值规律与总体的取值规律之间会存在偏差,而在决策问题中,只要临界值近似为第80百分位数即可,因此为了实际中操作的方便,可以建议市政府把月均用水量标准定为14t,或者把年用水量标准定为168t.
你认为14t这个标准一定能够保证80%的居民用水不超标吗?如果不一定,那么哪些环节可能会导致结论的差别?
第p百分位数的定义
定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.
可以通过下面的步骤计算一组n个数据的第p百分位数:
第1步,按从小到大排列原始数据.
第2步,计算i=n×p%.
第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;
若i是整数,则第p百分位数为第项与第(i+1)项数据的平均数.
判断正误
1.若一组样本数据的10%分位数是23,则在这组数据中有10%的数据大于23.(
)
×
2.若一组样本数据的24%分位数是24,则在这组数据中至少有76%的数据大于或等于24.(
)√
不是.是指能够考取本科院校的同学占同学总数的百分比.
有70%的同学数学测试成绩在小于或等于85分.
(1)班级人数为50的班主任老师说“90%的同学能够考取本科院校”,这里的“90%”是百分位数吗?
(2)“这次数学测试成绩的第70百分位数是85分”这句话是什么意思?
思考1:第p百分位数有什么特点?
总体数据中的任意一个数小于或等于它的可能性是p.
中位数,相当于是第50百分位数.
常用的分位数还有第25百分位数,第75百分位数.
这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.
其中第25百分位数也称为第一四分位数或下四分位数等,
第75百分位数也称为第三四分位数或上四分位数等,
第1百分位数第5百分位数,第95百分位数和第99百分位数在统计中也经常被使用.
163.0
164.0
161.0
157.0
162.0
165.0
158.0
155.0
164.0
162.5
154.0
154.0
164.0
149.0
159.0
161.0
170.0
171.0
155.0
148.0
172.0
162.5
158.0
155.5
157.0
163.0
172.0
例2.根据下面女生的身高的样本数据,估计树人中学高一年级女生的第25,50,75百分位数.
解:把27名女生的样本数据按从小到大排序,可得
148.0
149.0
154.0
154.0
155.0
155.0
155.5
157.0
157.0
158.0
158.0
159.0
161.0
161.0
162.0
162.5
162.5
163.0
163.0
164.0
164.0
164.0
165.0
170.0
171.0
172.0
172.0
由25%×27=6.75,
50%×27=13.5,
75%×27=20.25,
可知样本数据的第25,50,75百分位数为第7,
14,21项数据,分别为155.5,161,164.
据此可以估计树人中学高一年级女生的第25,50,75百分位数分别约为155.5,161和164.
例3.根据下表或下图,估计月均用水量的样本数据的80%和95%分位数.
分析:统计表或统计图,与原始数据相比,它们损失了一些信息,例如由上表中可以知道在[16.2,19.2)内有5个数据,但不知道这5个数据具体是多少.此时,我们通常把它们看成均匀地分布在此区间上.
解:由表可知,月均用水量在13.2t以下的居民用户所占比例为23%+32%+13%+9%=77%.
在16.2t以下的居民用户所占的比例为77%+9%=86%.
因此,80%分位数一定位于[13.2,16.2)内.
由13.2+3×
=14.2,
可以估计月均用水量的样本
数据的80%分位数约为14.2.
类似地,由22.2+3×
=22.95,
可以估计月均用水量的样本数据的95%分位数约为22.95.
计算方法和计算中位数是一样的
下表为12名毕业生的起始月薪
毕业生起始月薪?毕业生起始月薪12
85072
89022
95083
13033
05092
94042
880103
32552
755112
92062
710122
880
根据表中所给的数据计算第85百分位数.
解:计算i=12×85%=10.2,
所以所给数据的第85百分位数是从小到大的第11个数据3
130
由回顾知识出发,提出问题,让学生感受到对数据的整理和分析的重要性。发展学生数学抽象、直观想象和逻辑推理的核心素养。
通过具体问题,让学生感受总体百分位数在解决实际问题中的运用,发展学生数学抽象、逻辑推理的核心素养。
通过实例分析,让学生掌握求总体百分位数基本步骤,并熟悉的应用能力,提升推理论证能力,提高学生的数学抽象、数学建模及逻辑推理的核心素养。
三、达标检测
1.下列一组数据的第25百分位数是(  )
2.1,3.0,3.2,3.8,3.4,4.0,4.2,4.4,5.3,5.6
A.3.2
B.3.0
C.4.4
D.2.5
解 把该组数据按照由小到大排列,可得:
2.1,3.0,3.2,3.4,3.8,4.0,4.2,4.4,5.3,5.6,
由i=10×25%=2.5,不是整数,则第3个数据3.2,是第25百分位数.故选A
2.知100个数据的第75百分位数是9.3,则下列说法正确的是(  )
A.这100个数据中一定有75个数小于或等于9.3
B.把这100个数据从小到大排列后,9.3是第75个数据
C.这100个数从小到大排列后,9.3是第75个数和第76个数的平均数
D.这100个数从小到大排列后,9.3是第75个数和第74个数的平均数
解析:因为100×75%=75为整数,所以第75个数据和第76个数据的平均数为第75百分位数,是9.3,选C
3.某公司2018年在各个项目中总投资500万元,如图是几类项目的投资占比情况,已知在1万元以上的项目投资中,少于3万元的项目投资占
,那么不少于3万元的项目投资共有(  )
A.56万元
B.65万元
C.91万元
D.147万元
4.
为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,你能估计一下60株树木的第50百分位数和第75百分位数吗?
解:由题意知分别落在各区间上的频数为
在[80,90)上有60×0.15=9,在[90,100)上有60×0.25=15,
在[100,110)上有60×0.3=18,在[110,120)上有60×0.2=12,
在[120,130]上有60×0.1=6.从以上数据可知第50百分位数一定落在区间[100,110)上,
综上可知,第50百分位数和第75百分位数分别估计为103.3
cm,112.5
cm.
5.从某珍珠公司生产的产品中,任意抽取12颗珍珠,得到它们的质量(单位:g)如下:
7.9,9.0,8.9,8.6,8.4,8.5,8.5,8.5,9.9,7.8,8.3,8.0.
(1)分别求出这组数据的第25,50,95百分位数;
2)请你找出珍珠质量较小的前15%的珍珠质量;
3)若用第25,50,95百分位数把公司生产的珍珠划分为次品、合格品、优等品和特优品,依照这个样本的数据,给出该公司珍珠等级的划分标准.
解 (1)将所有数据从小到大排列,得7.8,7.9,8.0,8.3,8.4,8.5,8.5,8.5,8.6,8.9,9.0,9.9,因为共有12个数据,
所以12×25%=3,12×50%=6,12×95%=11.4,
则第25百分位数是=8.15,
第50百分位数是=8.5,
第95百分位数是第12个数据为9.9.
(2)因为共有12个数据,所以12×15%=1.8,则第15百分位数是第2个数据为7.9.
即产品质量较小的前15%的产品有2个,它们的质量分别为7.8,7.9.
(3)由(1)可知样本数据的第25百分位数是8.15
g,第50百分位数为8.5
g,第95百分位数是9.9
g,所以质量小于或等于8.15
g的珍珠为次品,质量大于8.15
g且小于或等于8.5
g的珍珠为合格品,质量大于8.5
g且小于或等于9.9
g的珍珠为优等品,质量大于9.9
g的珍珠为特优品.
6.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200千瓦时的部分按0.5元/千瓦时收费,超过200千瓦时但不超过400千瓦时的部分按0.8元/千瓦时收费,超过400千瓦时的部分按1.0元/千瓦时收费.
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:千瓦时)的函数解析式.
(2)为了了解居民的用电情况,通过抽样获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.若这100户居民中,今年1月份用电费用不超过260元的占80%,求a,b的值.
(3)根据(2)中求得的数据a=0.001
5,b=0.002
0.计算用电量的75%分位数.
[解] (1)当0≤x≤200时,y=0.5x;
当200当x>400时,y=0.5×200+0.8×200+1.0×(x-400)=x-140.
所以y与x之间的函数解析式为y=
(2)由(1)可知,当y=260时,x=400,即用电量不超过400千瓦时的占80%,
用电量不超过400千瓦时的占80%,所以75%分位数为m在[300,400)内,所以0.6+(m-300)×0.002=0.75,
解得m=375千瓦时,
即用电量的75%分位数为375千瓦时.
(3)设75%分位数为m,因为用电量低于30千瓦时的所占比例为(0.001+0.002+0.003)×100=60%,
通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学抽象、逻辑推理、数学运算、数学建模的核心素养。
四、小结
1.通过学习和应用百分位数,重点培养数据分析素养、数学运算和数学建模素养.
2.求一组数据的百分位数时,掌握其步骤:
①按照从小到大排列原始数据;
②计算i=n×p%;
③若i不是整数,大于i的最小整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.
五、课时练
通过总结,让学生进一步巩固本节所学内容,提高概括能力。
本节课通过探究栏目提出“居民生活用水定额管理问题”,在制定水价问题中提出,总体百分位数的估计的概念,让学生尝试运用总体百分位数的估计来解决实际问题,体会总体百分位数的估计的意义和作用教学中要注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。9.2.1
总体取值规律的估计
第1课时
频率分布直方图
本节是主要介绍表示样本分布的方法,包括频率分布表、频率分布直方图、条形图、扇形图、折线图等.由于作统计图、表的操作性很强,所以教学中要使学生在明确图、表含义的前提下,让学生自己动手作图.同时让学生理解:对于一个总体的分布,我们往往从总体抽取一个样本,用样本的频率分布估计总体分布.
学生在初中已经学过把样本数据表示成频数分布表和频数分布图的形式,能从图表上直观的看出数据的分布情况,为学习本节内容在基础知识上有了铺垫。
课程目标
1.结合实例,能用样本估计总体的取值规律.
2.会列频率分布表,画频率分布直方图.
3.能根据频率分布表和频率分布直方图观测数据的分布规律.
数学学科素养
1.直观想象:频率分布直方图的绘制与应用;
2.数学运算:频率分布直方图中的相关计算问题.
重点:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.
难点:①列频率分布表,画频率分布直方图;②根据频率分布表和频率分布直方图观测数据的分布规律.
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
情景导入
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为为了较为合理地确定出这个标准需要做哪些工作?
要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、预习课本,引入新课
阅读课本192-197页,思考并完成以下问题
1、画频率分布直方图的步骤有哪些?
2、频率分布直方图的纵轴表示什么?各矩形面积之和等于什么?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.频率分布直方图绘制步骤
①求极差,即一组数据中的最大值与最小值的差.
②决定组距与组数.组距与组数的确定没有固定的标准,一般数据的个数越多,所分组数越多.当样本容量不超过100时,常分成5~12组.为方便起见,一般取等长组距,并且组距应力求“取整”.
③将数据分组.
④列频率分布表.计算各小组的频率,第i组的频率是.
⑤画频率分布直方图.其中横轴表示分组,纵轴表示.实际上就是频率分布直方图中各小长方形的高度,它反映了各组样本观测数据的疏密程度.
2.
频率分布直方图意义:各个小长方形的面积表示相应各组的频率,频率分布直方图以面积的形式反映数据落在各个小组的频率的大小,各小长方形的面积的总和等于1.
3.总体取值规律的估计:我们可以用样本观测数据的频率分布估计总体的取值规律.
4.频率分布直方图的特征:当频率分布直方图的组数少、组距大时,容易从中看出数据整体的分布特点,但由于无法看出每组内的数据分布情况,损失了较多的原式数据信息;当频率分布直方图的组数多、组距小时,保留了较多的原始数据信息,但由于小长方形较多,有时图形会变得非常不规则
,不容易从中看出总体数据的分布特点.
四、典例分析、举一反三
题型一
频率分布直方图的绘制与应用
例1
一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):
6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.0 5.4 4.6
5.8 5.5 6.0 6.5 5.1 
6.5 5.3 5.9 5.5 5.8
6.2 5.4 5.0 5.0 6.8 6.0 5.0 5.7 6.0 5.5
6.8 6.0 6.3 5.5 5.0 6.3 5.2 6.0 7.0 6.4
6.8 6.0 6.3 5.5 5.0 
6.3 5.2 6.0 7.0 6.4
6.0 5.4 6.5 6.0 6.8 5.8 6.3 6.0 6.3 5.6
5.3 6.4 5.7 6.7 6.2 5.6 6.0 6.7 6.7 6.0
5.8 5.3 7.0 6.0 6.0 
5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7
5.9 5.4 6.0 5.2 6.0
6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3
根据上面的数据列出频率分布表、绘出频率分布直方图,并用自己的语言描述一下这批麦穗长的情况.
【答案】见解析
【解析】步骤是:
(1)计算极差,7.4-4.0=3.4(cm).
(2)决定组距与组数.
若取组距为0.3
cm,由于=11,需分成12组,组数合适.于是取定组距为0.3
cm,组数为12.
(3)将数据分组.
使分点比数据多一位小数,并且把第1小组的起点稍微减小一点.则所分的12个小组可以是[3.95,4.25),[4.25,4.55),[4.55,4.85),…,[7.25,7.55].
(4)列频率分布表.
对各个小组作频数累计,然后数频数,算频率,列频率分布表,如下表所示:
分组
频数累计
频数
频率
[3.95,4.25)
1
0.01
[4.25,4.55)
1
0.01
[4.55,4.85)
2
0.02
[4.85,5.15)
5
0.05
[5.15,5.45)
11
0.11
[5.45,5.75)
15
0.15
[5.75,6.05)
28
0.28
[6.05,6.35)
13
0.13
[6.35,6.65)
11
0.11
[6.65,6.95)
10
0.10
[6.95,7.25)
2
0.02
[7.25,7.55]
1
0.01
合计
100
1.00
(5)画频率分布直方图,如图.
从表中看到,从频率分布表中可以看出,绝大部分麦穗长集中在5.15-5.95,并且5.75-6.05占比最大.
解题技巧(绘制频率分布直方图的注意事项)
1.在列频率分布表时,极差、组距、组数有如下关系:
(1)若为整数,则=组数;
(2)若不为整数,则的整数部分+1=组数.
2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,纵使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.
跟踪训练一
1. 某制造商3月份生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下表:
分组
频数
频率
[39.95,39.97)
10
[39.97,39.99)
20
[39.99,40.01)
50
[40.01,40.03]
20
合计
100
补充完成频率分布表(结果保留两位小数),并在下图中画出频率分布直方图.
【答案】见解析.
【解析】频率分布表如下:
分组
频数
频率
[39.95,39.97)
10
0.10
[39.97,39.99)
20
0.20
[39.99,40.01)
50
0.50
[40.01,40.03]
20
0.20
合计
100
1.00
频率分布直方图如下:
题型二
频率分布直方图中的相关计算问题
例2
在某次数学测验后,将参加考试的500名学生的数学成绩制成频率分布直方图(如图),则在该次测验中成绩不低于100分的学生人数是(  )
A.210
B.205
C.200
D.195
【答案】C
【解析】由频率分布直方图,得在该次测验中成绩不低于100分的学生的频率为1-(0.012+0.018+0.030)×10=0.4,
∴在该次测验中成绩不低于100分的学生人数为500×0.4=200.故选C.
解题技巧
(计算规律)
1.因为小长方形的面积=组距×=频率,所以各小长方形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.
2.在频率分布直方图中,各小长方形的面积之和等于1.
3.=样本量.
4.在频率分布直方图中,各长方形的面积之比等于频率之比,各长方形的高度之比也等于频率之比. 
跟踪训练二
1.如图所示是由总体的一个样本绘制的频率分布直方图,且在[15,18)内频数为8.
(1)求样本在[15,18)内的频率;
(2)求样本量;
(3)若在[12,15)内的小矩形面积为0.06,求在[18,33)内的频数.
【答案】(1).
(2)
50.
(3)
39.
【解析】
由样本频率分布直方图可知组距为3.
(1)由样本频率分布直方图得样本在[15,18)内的频率等于×3=.
(2)样本在[15,18)内的频数为8,由(1)可知,样本量为=8×=50.
(3)在[12,15)内的小矩形面积为0.06,故样本在[12,15)内的频率为0.06,故样本在[15,33)内的频数为50×(1-0.06)=47.又因为在[15,18)内的频数为8,故在[18,33)内的频数为47-8=39.
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
(
9.2.1
总体取值规律的估计

1
课时
频率分布直方图
1.绘制步骤

1
例2
例3
2.频率分布直方图的意义
3.总体取值规律的估计
4.频率分布直方图的特征
)
七、作业
课本197页练习.
本节课之前学生已有一定的统计学基础知识及分析问题和解决问题的能力,对常见的数学思想已有初步的认识和应用。但是在教学中也要考虑到个别学生由于基础差在学习上可能比较吃力,所以讲新课前可以让学生到现实生活中对某些生活现象进行数据统计分析,让学生对统计学产生一定的兴趣,并且体会统计学在实际生活中的作用及基本操作。