动量(二)
【疑难应用】
例1.(2011年 安徽)24.如图所示,M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于水平状态。现给小球一个竖直向上的初速度/s,g取10m/。
(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时加速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
解析:(1)设小球能通过最高点,且此时的速度为v1。在上升过程中,因只有重力做功,小球的机械能守恒。则
①
②
设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则
③
由②③式,得 F=2N ④
由牛顿第三定律可知,小球对轻杆的作用力大小为2N,方向竖直向上。
(2)解除锁定后,设小球通过最高点时的速度为v2,此时滑块的速度为V。在上升过程中,因系统在水平方向上不受外力作用,水平方向的动量守恒。以水平向右的方向为正方向,有
⑤
在上升过程中,因只有重力做功,系统的机械能守恒,则
⑥
由⑤⑥式,得 v2=2m/s ⑦
(3)设小球击中滑块右侧轨道的位置点与小球起始点的距离为s1,滑块向左移动的距离为s2,任意时刻小球的水平速度大小为v3,滑块的速度大小为V/。由系统水平方向的动量守恒,得
⑦
将⑧式两边同乘以,得
⑨
因⑨式对任意时刻附近的微小间隔都成立,累积相加后,有
⑩
又
由式得
例2.(2011年 新课标)35.(2)如图,ABC三个木块的质量均为m。置于光滑的水平面上,BC之间有一轻质弹簧,弹簧的两端与木块接触可不固连,将弹簧压紧到不能再压缩时用细线把BC紧连,是弹簧不能伸展,以至于BC可视为一个整体,现A以初速沿BC的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为,求弹簧释放的势能。
解析(2)解:设碰后A、B和C的共同速度的大小为v,由动量守恒得
①
设C离开弹簧时,A、B的速度大小为,由动量守恒得
②
设弹簧的弹性势能为,从细线断开到C与弹簧分开的过程中机械能守恒,有
③
由①②③式得弹簧所释放的势能为
④
例3.(2010年 安徽)24.(20分)如图,ABD,为竖直平面内的光滑绝缘轨道,其中AB段是水平的,BD段为半径R=0.2m的半圆,两段轨道相切于B点,整个轨道处在竖直向下的匀强电场中,场强大小E=5.0×103 V/m2一不带电的绝缘小球甲,以速度v0沿水平轨道向右运动,与静止在B点带正电的小球乙发生弹性碰撞。已知甲、乙两球的质量均为m=1.0×10-3 kg,乙所带电荷量q=2.0×10-5C,g取10 m/s2。(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)
(1)甲、乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B点的距离;
(2)在满足(1)的条件下,求甲的速度v0;
(3)若甲仍以速度v0向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B点的距离范围。
解析:
(1)大乙恰能通过轨道最高点的情况,设乙到达最高点速度为v0,乙离开D点到达水平轨道的时间为t,乙的落点到B点的距离为x,则
①
②
③
联立①②③得
④
(2)设碰撞后甲、乙的速度分别为v甲、v乙,根据动量守恒定律的机械能守恒定律有
⑤
⑥
联立⑤⑥得
⑦
由动能定理,得
⑧
联立①⑦⑧得
⑨
(3)设甲的质量为M,碰撞后甲、乙的速度分别为,根据动量守恒定律和机械能守恒定律有
(10)
(11)
联立(10)(11)得
(12)
由(12)和,可得
(13)
设乙球过D点时速度为,由动能定理得
(14)
联立⑨(13)(14)得
设乙在水平轨道上的落点距B点的距离为有
联立②(15)(16)得
例4.(2010年 天津)10.(16分)如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h。物块B质量是小球的5倍,置于粗糙的水平面上且位于O点的正下方,物块与水平面间的动摩擦因数为μ。现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为。小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t。
解析:
设小球的质量为m,运动到最低点与物块碰撞前的速度大小为,取小球运动到最低点重力势能为零,根据机械能守恒定律,有
①
得
设碰撞后小球反弹的速度大小为,同理有
②
得
设碰撞后物块的速度大小为,取水平向右为正方向,根据动量守恒定律,有
③
得 ④
物块在水平面上滑行所受摩擦力的大小
⑤
设物块在水平面上滑行的时间为,根据动量定理,有
⑥
得 ⑦
例5.(2009年全国卷Ⅰ)25.(18分) 如图所示,倾角为θ的斜面上静止放置三个质量均为m的木箱,相邻两木箱的距离均为l。工人用沿斜面的力推最下面的木箱使之上滑,逐一与其它木箱碰撞。每次碰撞后木箱都粘在一起运动。整个过程中工人的推力不变,最后恰好能推着三个木箱匀速上滑。已知木箱与斜面间的动摩擦因数为μ,重力加速度为g.设碰撞时间极短,求
工人的推力;
三个木箱匀速运动的速度;
在第一次碰撞中损失的机械能。
答案:(1);(2);(3)。
解析:(1)当匀速时,把三个物体看作一个整体受重力、推力F、摩擦力f和支持力.根据平衡的知识有
(2)第一个木箱与第二个木箱碰撞之前的速度为V1,加速度根据运动学公式或动能定理有,碰撞后的速度为V2根据动量守恒有,即碰撞后的速度为,然后一起去碰撞第三个木箱,设碰撞前的速度为V3
从V2到V3的加速度为,根据运动学公式有,得,跟第三个木箱碰撞根据动量守恒有,得就是匀速的速度.
设第一次碰撞中的能量损失为,根据能量守恒有,带入数据得。
例6.(2009年广东物理)19.(16分)如图19所示,水平地面上静止放置着物块B和C,相距=1.0m 。物块A以速度=10m/s沿水平方向与B正碰。碰撞后A和B牢固地粘在一起向右运动,并再与C发生正碰,碰后瞬间C的速度=2.0m/s 。已知A和B的质量均为m,C的质量为A质量的k倍,物块与地面的动摩擦因数=0.45.(设碰撞时间很短,g取10m/s2)
(1)计算与C碰撞前瞬间AB的速度;
(2)根据AB与C的碰撞过程分析k的取值范围,并讨论与C碰撞后AB的可能运动方向。
解析:⑴设AB碰撞后的速度为v1,AB碰撞过程由动量守恒定律得
设与C碰撞前瞬间AB的速度为v2,由动能定理得
联立以上各式解得
⑵若AB与C发生完全非弹性碰撞,由动量守恒定律得
代入数据解得
此时AB的运动方向与C相同
若AB与C发生弹性碰撞,由动量守恒和能量守恒得
联立以上两式解得
代入数据解得
此时AB的运动方向与C相反
若AB与C发生碰撞后AB的速度为0,由动量守恒定律得
代入数据解得
总上所述得 当时,AB的运动方向与C相同
当时,AB的速度为0
当时,AB的运动方向与C相反
【疑难检测】
一.选择题
1.(2011年 全国卷)20.质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ。初始时小物块停在箱子正中间,如图所示。现给小物块一水平向右的初速度v,小物块与箱壁碰撞N次后恰又回到箱子正中间,井与箱子保持相对静止。设碰撞都是弹性的,则整个过程中,系统损失的动能为
A. B.
C. D.
2.(2010年 福建)(2)如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度,则 。(填选项前的字母)
A.小木块和木箱最终都将静止
B.小木块最终将相对木箱静止,二者一起向右运动
C.小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动
D.如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动
3.(2009年全国卷Ⅰ)21.质量为M的物块以速度V运动,与质量为m的静止物块发生正撞,碰撞后两者的动量正好相等,两者质量之比M/m可能为
A.2 B.3 C.4 D. 5
二.填空题
4.(2011年 北京)21.(2)如图2,用“碰撞试验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系。
①试验中,直接测定小球碰撞前后的速度是不容易的。但是,可以通过仅测量 (填选项钱的序号),间接地解决这个问题
A.小球开始释放高度
B.小球抛出点距地面的高度
C.小球做平抛运动的射程
②图2中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP。然后把被碰小球静止于轨道的水平部分,再将入射小球从斜轨上位置静止释放,与小球相撞,并多次重复。接下来要完成的必要步骤是 (填选项的符号)
A.用天平测量两个小球的质量、
B.测量小球开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到相碰后平均落地点的位置M、N
E.测量平抛射程OM,ON
③若两球相碰前后的动量守恒,其表达式可表示为 (用②中测量的量表示);若碰撞是弹性碰撞。那么还应满足的表达式为 (用②中测量的量表示)。
④经测定,,小球落地点的平均位置到O点的距离如图3所示。碰撞前,后m1 的动量分别为p1与p-,则p1:p-= ;
若碰撞结束时m2的动量为,则=11:
实验结果说明,碰撞前、后总动量的比值为
⑤有同学认为在上述实验中仅更换两个小球的材质,其它条件不变可以使被撞小球做平抛运动的射程增大。请你用④中已知的数据,分析计算出被撞小球m2平抛运动射程ON的最大值为 cm
5.(2011年 上海)22A.光滑水平面上两小球a、b用不可伸长的松弛细绳相连。开始时a球静止,b球以一定速度运动直至绳被拉紧,然后两球一起运动,在此过程中两球的总动量 (填“守恒”或“不守恒”);机械能 (填“守恒”或“不守恒”)。
6.(2010年 江苏)12.C(2)钠金属中的电子吸收光子的能量,从金属表面逸出,这就是光电子。光电子从金属表面逸出的过程中,其动量的大小______(选填“增大、“减小”或“不变”), 原因是______。
三.计算题
7.(2011年 全国卷)26.(20分)装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击。通过对以下简化模型的计算可以粗略说明其原因。质量为2m、厚度为2d的钢板静止在水平光滑桌面上。质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿。现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示。若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度。设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响。
8.(2011年 山东)38.(2)如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线同一方向运动,速度分别为、V0。为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度。(不计水的阻力)
9.(2011年 重庆)24.(18分)如题24图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。车运动时受到的摩擦阻力恒为车所受重力的k倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:
(1)整个过程中摩擦阻力 所做的总功;
(2)人给第一辆车水平冲量的大小;
(3)第一次与第二次碰撞系统动能损失之比。
10.(2011年 海南)(2)(8分)一质量为2m的物体P静止于光滑水平地面上,其截面如图所示。图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接。现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止。重力加速度为g。求
(i)木块在ab段受到的摩擦力f;
(ii)木块最后距a点的距离s。
11.(2011年 北京)24.(20分)雨滴在穿过云层的过程中,不断与漂浮在云层中的小水珠相遇并结合为一体,其质量逐渐增大。现将上述过程简化为沿竖直方向的一系列碰撞。已知雨滴的初始质量为,初速度为,下降距离后于静止的小水珠碰撞且合并,质量变为。此后每经过同样的距离后,雨滴均与静止的小水珠碰撞且合并,质量依次为、............(设各质量为已知量)。不计空气阻力。
若不计重力,求第次碰撞后雨滴的速度;
若考虑重力的影响,
a.求第1次碰撞前、后雨滴的速度和;
b.求第n次碰撞后雨滴的动能。
12.(2011年 海南)19.(2)(8分)在核反应堆中,常用减速剂使快中子减速。假设减速剂的原子核质量是中子的k倍,中子与原子核的每次碰撞都可看成是弹性正磁。设每次碰撞前原子核可认为是静止的,求N次碰撞后中子速率与原速率之比。
13.(2010年 全国2) 25.(18分)小球A和B的质量分别为和且>在某高度处将A和B先后从静止释放。小球A与水平地面碰撞后向上弹回,在释放处的下方与释放出距离为H的地方恰好与正在下落的小球B发生正幢,设所有碰撞都是弹性的,碰撞事件极短。求小球A、B碰撞后B上升的最大高度。
14.(2010年 山东)38.(2)如图所示,滑块A、C质量均为m,滑块B质量为,开始时A、B分别以、的速度沿光滑水平轨道向固定在右侧的挡板运动,现将C无初速地放在A上,并与A粘合不再分开,此时A与B相距较近,B与挡板相距足够远。若B与挡板碰撞将以原速率反弹,A与B碰撞将粘合在一起。为使B能与挡板碰撞两次,、应满足什么关系?
15.(2010年 新课标)35.(2)(10分)如图所示,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙。重物质量为木板质量的2倍,重物与木板间的动摩擦因数为。使木板与重物以共同的速度向右运动,某时刻木板与墙发生弹性碰撞,碰撞时间极短。求木板从第一次与墙碰撞到再次碰撞所经历的时间。设木板足够长,重物始终在木板上。重力加速度为g。
16.(2011年 重庆)25.(19分)某兴趣小组用如题25所示的装置进行实验研究。他们在水平桌面上固定一内径为d的圆柱形玻璃杯,杯口上放置一直径为d,质量为m的匀质薄原板,板上放一质量为2m的小物体。板中心、物块均在杯的轴线上,物块与板间动摩擦因数为,不计板与杯口之间的摩擦力,重力加速度为g,不考虑板翻转。
(1)对板施加指向圆心的水平外力,设物块与板间最大静摩擦力为,若物块能在板上滑动,求应满足的条件。
(2)如果对板施加的指向圆心的水平外力是作用时间极短的较大冲击力,冲量为,
①应满足什么条件才能使物块从板上掉下?
②物块从开始运动到掉下时的位移为多少?
③根据与的关系式说明要使更小,冲量应如何改变。
17.(2009年北京卷)24.(20分)(1)如图1所示,ABC为一固定在竖直平面内的光滑轨道,BC段水平,AB段与BC段平滑连接。质量为的小球从高位处由静止开始沿轨道下滑,与静止在轨道BC段上质量为的小球发生碰撞,碰撞后两球两球的运动方向处于同一水平线上,且在碰撞过程中无机械能损失。求碰撞后小球的速度大小;
(2)碰撞过程中的能量传递规律在屋里学中有着广泛的应用。为了探究这一规律,我们才用多球依次碰撞、碰撞前后速度在同一直线上、且无机械能损失的恶简化力学模型。如图2所示,在固定光滑水平轨道上,质量分别为、……的若干个球沿直线静止相间排列,给第1个球初能,从而引起各球的依次碰撞。定义其中第个球经过依次碰撞后获得的动能与之比为第1个球对第个球的动能传递系数。
a.求
b.若为确定的已知量。求为何值时,值最大
18.(2009年天津卷)10.(16分)如图所示,质量m1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0=2 m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数=0.5,取g=10 m/s2,求
物块在车面上滑行的时间t;
要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。
19.(2009年山东卷)24.(15分)如图所示,某货场而将质量为m1=100 kg的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物中轨道顶端无初速滑下,轨道半径R=1.8 m。地面上紧靠轨道次排放两声完全相同的木板A、B,长度均为l=2m,质量均为m2=100 kg,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为1,木板与地面间的动摩擦因数=0.2。(最大静摩擦力与滑动摩擦力大小相等,取g=10 m/s2)
(1)求货物到达圆轨道末端时对轨道的压力。
(2)若货物滑上木板4时,木板不动,而滑上木板B时,木板B开始滑动,求1 应满足的条件。
(3)若1=0。5,求货物滑到木板A末端时的速度和在木板A上运动的时间。
20.(2009年山东卷)38.(4分)[物理3-5](2)如图所示,光滑水平面轨道上有三个木块,A、B、C,质量分别为mB=mc=2m,mA=m,A、B用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时A、B以共同速度v0运动,C静止。某时刻细绳突然断开,A、B被弹开,然后B又与C发生碰撞并粘在一起,最终三滑块速度恰好相同。求B与C碰撞前B的速度。
21.(2009年安徽卷)23.(16分)如图所示,匀强电场方向沿轴的正方向,场强为。在点有一个静止的中性微粒,由于内部作用,某一时刻突然分裂成两个质量均为的带电微粒,其中电荷量为的微粒1沿轴负方向运动,经过一段时间到达点。不计重力和分裂后两微粒间的作用。试求
(1)分裂时两个微粒各自的速度;
(2)当微粒1到达(点时,电场力对微粒1做功的瞬间功率;
(3)当微粒1到达(点时,两微粒间的距离。
22.(2009年重庆卷)23.(16分)2009年中国女子冰壶队首次获得了世界锦标赛冠军,这引起了人们对冰壶运动的关注。冰壶在水平冰面上的一次滑行可简化为如下过程:如题23图,运动员将静止于O点的冰壶(视为质点)沿直线推到A点放手,此后冰壶沿滑行,最后停于C点。已知冰面各冰壶间的动摩擦因数为,冰壶质量为m,AC=L,=r,重力加速度为g
(1)求冰壶在A 点的速率;
(2)求冰壶从O点到A点的运动过程中受到的冲量大小;
(3)若将段冰面与冰壶间的动摩擦因数减小为,原只能滑到C点的冰壶能停于点,求A点与B点之间的距离。
23.(09年重庆卷)24.(18分)探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:
①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(见题24图a);
②由静止释放,外壳竖直上升至下端距桌面高度为时,与静止的内芯碰撞(见题24图b);
③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为处(见题24图c)。
设内芯与外壳的撞击力远大于笔所受重力、不计摩擦与空气阻力,重力加速度为g。
求:(1)外壳与碰撞后瞬间的共同速度大小;
(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功;
(3)从外壳下端离开桌面到上升至处,笔损失的机械能。
24.(2009年宁夏卷)36.[物理——选修3-5](2)(10分)两质量分别为M1和M2的劈A和B,高度相同,放在光滑水平面上,A和B的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为m的物块位于劈A的倾斜面上,距水平面的高度为h。物块从静止滑下,然后双滑上劈B。求物块在B上能够达到的最大高度。
25.(2009年宁夏卷)24.(14分)冰壶比赛是在水平冰面上进行的体育项目,比赛场地示意如图。比赛时,运动员从起滑架处推着冰壶出发,在投掷线AB处放手让冰壶以一定的速度滑出,使冰壶的停止位置尽量靠近圆心O.为使冰壶滑行得更远,运动员可以用毛刷擦冰壶运行前方的冰面,使冰壶与冰面间的动摩擦因数减小。设冰壶与冰面间的动摩擦因数为=0.008,用毛刷擦冰面后动摩擦因数减少至=0.004.在某次比赛中,运动员使冰壶C在投掷线中点处以2m/s的速度沿虚线滑出。为使冰壶C能够沿虚线恰好到达圆心O点,运动员用毛刷擦冰面的长度应为多少?(g取10m/s2)
【试题答案】
一.选择题
题号 1 2 3
答案 BD B AB
二.填空题
4.解析:(2011年 北京)21.(2)(2)
①C
②ADE或DEA或DAE
③m1·OM+m2·ON=m1·OP m1·OM2+m2·ON2=m1·OP2
④14 2.9 1~1.01
⑤76.8
5.守恒,不守恒
6.减小;光电子受到金属表面层中力的阻碍作用(或需要克服逸出功)
三.计算题
7.解析:设子弹初速度为,射入厚度为2d的钢板后,最终钢板和子弹的共同速度为V,由动量守恒得
①
解得
此过程中动能损失为
②
解得
分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为和V1,由动量守恒得
③
因为子弹在钢板中受到的阻力为恒力,射穿第一块钢板的动能损失为,由能量守恒得
④
联立①②③④式,且考虑到必须大于,得
⑤
设子弹射入第二块钢板并留在其中后两者的共同速度为2,由动量定恒得
⑥
损失的动能为
⑦
联立①②⑤⑥⑦式得
⑧
因为子弹在钢板中受到的阻力为恒力,由⑧式可得,射入第二块钢板的深度x为
⑨
8.解析:②16。
(2)设乙船上的人抛出货物的最小速度大小为,抛出货物后船的速度为,甲船上的人接到货物后船的速度为v2,由动是不是守恒定律得
①
②
为避免两船相撞应满足
③
联立①②③式得
④
9.解析:24(18分)
解:(1)设运动过程中摩擦阻力做的总功为W,则
(2)设第一车初速度为u0,第一次碰前速度为v1,碰后共同速度为u1;第二次碰前速度为v2,碰
后共同速度为u:;人给第一车的水平冲量大小为I.
由:
得:
(3)设两次碰撞中系统动能损失分别为△Ek1,和△Ek2.
由:△
△
得:△△Ek1/△Ek2=13/3
10.解析:(i)设木块和物体P共同速度为v,两物体从开始到第一次到达共同速度过程由动量和能量守恒得: ①②
由①②得:③
(ii)木块返回与物体P第二次达到共同速度与第一次相同(动量守恒)全过程能量守恒得:
④
由②③④得:
11.解析:(20分)
(1)不计重力,全过程中动量守恒,m0v0=mnv′n
得
(2)若考虑重力的影响,雨滴下降过程中做加速度为g的匀加速运动,碰撞瞬间动量守恒
a. 第1次碰撞前
第1次碰撞后
b. 第2次碰撞前
利用式化简得
第2次碰撞后,利用式得
同理,第3次碰撞后
…………
第n次碰撞后
动能
12.解析(2)设中子和作减速剂的物质的原子核A的质量分别为和,碰撞后速度分别为,碰撞前后的总动量和总能量守恒,有
①
②
式中为碰撞前中子速度,由题设
③
由①②③式,经1次碰撞后中子速率与原速率之比为
④
经N次碰撞后,中子速率与原速率之比为
⑤
评分参考:本题共8分,①②④⑤式各2分.
13.解析:25. 根据题意,由运动学规律可知,小球A与B碰撞前的速度大小相等,设均为,由机械能守恒有
①
设小球A与B碰撞后的速度分别为和,以竖直向上方向为正,由动量守恒有
②
由于两球碰撞过程中能量守恒,故
③
联立②③式得
④
设小球B能上升的最大高度为h,由运动学公式有
⑤
由①④⑤式得
⑥
评分参考:①式3分,②③式各4分,④式2分,⑤式3分,⑥式2分.
14.解析:设向右为正方向,A与C粘合在一起的共同速度为,由动量守恒定律得
①
为保证B碰挡板前A未能追上B,应满足
②
设A与B碰后的共同速度为,由动量守恒定律得
③
为使B能一挡板再次碰撞应满足
④
联立①②③④式得
⑤
15.解析:(2010年 新课标)35.(2)(10分)解:第一次与墙碰撞后,木板的速度反向,大小不变,此后木板向左做匀减速运动,重物向右做匀减速运动,最后木板和重物达到共同的速度。设木板的质量为m,重物的质量为2m,取向右为动量的正向,由动量守恒得①
设从第一次与墙碰撞到重物和木板具有共同速度v所用的时间为,对木板应用动量定理得②
由牛顿第二定律得③
式中为木板的加速度。
在达到共同速度v时,木板离墙的距离为④
开始向右做匀速运动到第二次与墙碰撞的时间为⑤
从第一次碰撞到第二次碰撞所经过的时间为⑥
由以上各式得⑦
16.解析:(1)设圆板与物块相对静止时,它们之间的静摩擦力为f,共同加速度为a
由牛顿运动定律,有
对物块 f=2ma 对圆板 F-f=ma
两物相对静止,有 f≤fmax
得 F≤fmax
相对滑动的条件
(2)设冲击刚结束的圆板获得的速度大小为,物块掉下时,圆板和物块速度大小分别为和
由动量定理,有
由动能定理,有
对圆板
对物块
由动量守恒定律,有
要使物块落下,必须
由以上各式得
s=
分子有理化得
s=
根据上式结果知:越大,s越小.
17.解析:
(1)设碰撞前的速度为,根据机械能守恒定律
①
设碰撞后m1与m2的速度分别为v1和v2,根据动量守恒定律
②
由于碰撞过程中无机械能损失
③
②、③式联立解得
④
将①代入得④
(2)a由④式,考虑到得
根据动能传递系数的定义,对于1、2两球
⑤
同理可得,球m2和球m3碰撞后,动能传递系数k13应为
⑥
依次类推,动能传递系数k1n应为
解得
b.将m1=4m0,m3=mo代入⑥式可得
为使k13最大,只需使
由
18.答案:(1)0.24s (2)5m/s
解析:本题考查摩擦拖动类的动量和能量问题。涉及动量守恒定律、动量定理和功能关系这些物理规律的运用。
(1)设物块与小车的共同速度为v,以水平向右为正方向,根据动量守恒定律有
①
设物块与车面间的滑动摩擦力为F,对物块应用动量定理有
②
其中 ③
解得
代入数据得 ④
(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v′,则
⑤
由功能关系有
⑥
代入数据解得 =5m/s
故要使物块不从小车右端滑出,物块滑上小车的速度v0′不能超过5m/s。
19.解析:(1)设货物滑到圆轨道末端是的速度为,对货物的下滑过程中根据机械能守恒定律得,①
设货物在轨道末端所受支持力的大小为,根据牛顿第二定律得,②
联立以上两式代入数据得③
根据牛顿第三定律,货物到达圆轨道末端时对轨道的压力大小为3000N,方向竖直向下。
(2)若滑上木板A时,木板不动,由受力分析得④
若滑上木板B时,木板B开始滑动,由受力分析得⑤
联立④⑤式代入数据得⑥。
(3),由⑥式可知,货物在木板A上滑动时,木板不动。设货物在木板A上做减速运动时的加速度大小为,由牛顿第二定律得⑦
设货物滑到木板A末端是的速度为,由运动学公式得⑧
联立①⑦⑧式代入数据得⑨
设在木板A上运动的时间为t,由运动学公式得⑩
联立①⑦⑨⑩式代入数据得。
考点:机械能守恒定律、牛顿第二定律、运动学方程、受力分析
20.解析:(2)设共同速度为v,球A和B分开后,B的速度为,由动量守恒定律有,,联立这两式得B和C碰撞前B的速度为。
21.解析:答案:(1),方向沿y正方向(2)(3)2
(1)微粒1在y方向不受力,做匀速直线运动;在x方向由于受恒定的电场力,做匀加速直线运动。所以微粒1做的是类平抛运动。设微粒1分裂时的速度为v1,微粒2的速度为v2则有:
在y方向上有
-
在x方向上有
-
根号外的负号表示沿y轴的负方向。
中性微粒分裂成两微粒时,遵守动量守恒定律,有
方向沿y正方向。
(2)设微粒1到达(0,-d)点时的速度为v,则电场力做功的瞬时功率为
其中由运动学公式
所以
(3)两微粒的运动具有对称性,如图所示,当微粒1到达(0,-d)点时发生的位移
则当微粒1到达(0,-d)点时,两微粒间的距离为
22.解析:
23.解析:
24.解析:设物块到达劈A的低端时,物块和A的的速度大小分别为和V,由机械能守恒和动量守恒得
①
②
设物块在劈B上达到的最大高度为,此时物块和B的共同速度大小为,由机械能守恒和动量守恒得
③
④
联立①②③④式得
⑤
25.解析:
设冰壶在未被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为:在 被毛刷擦过的冰面上滑行的距离为,所受摩擦力的大小为。则有
+=S ①
式中S为投掷线到圆心O的距离。
②
③
设冰壶的初速度为,由功能关系,得
④
联立以上各式,解得
⑤
代入数据得
⑥
(0, -d)
(d,0)
x
E
y
θ
vx
vy