北师大版七年级数学下学期 第四章 三角形考点梳理
【考点1 三角形中“三线”概念辨析】
【方法点拨】解决此类问题的关键是掌握三角形的角平分线,中线,线段的定义;根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上进行判断.
【例1】(2020春 迁西县期末)下列说法错误的是( )
A.三角形的高、中线、角平分线都是线段
B.三角形的三条中线都在三角形内部
C.锐角三角形的三条高一定交于同一点
D.三角形的三条高、三条中线、三条角平分线都交于同一点
【分析】根据三角形的角平分线,中线,线段的定义;根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上进行判断.
【解答】解:A、三角形的高、中线、角平分线都是线段,故正确;
B、三角形的三条中线都在三角形内部,故正确;
C、锐角三角形的三条高一定交于同一点,故正确;
D、三角形的三条角平分线、三条中线分别交于一点是正确的,三条高线所在的直线一定交于一点,高线指的是线段,故错误.
故选:D.
【点评】本题考查对三角形的中线、角平分线、高的正确理解.
【变式1-1】(2019春 平昌县期末)下列说法中错误的是( )
A.三角形三条高至少有一条在三角形的内部
B.三角形三条中线都在三角形的内部
C.三角形三条角平分线都在三角形的内部
D.三角形三条高都在三角形的内部
【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.
【解答】解:A、三角形三条高至少有一条在三角形的内部,故正确;
B、三角形三条中线都在三角形的内部,故正确;
C、三角形三条角平分线都在三角形的内部,故正确.
D、直角三角形有两条高就是直角三角形的边,一条在内部,钝角三角形有两条高在外部,一条在内部,故错误.
故选:D.
【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.
【变式1-2】(2020春 商水县期末)如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是( )
A.BF=CF B.∠C+∠CAD=90°
C.∠BAF=∠CAF D.S△ABC=2S△ABF
【分析】根据三角形的角平分线、中线和高的概念判断.
【解答】解:∵AF是△ABC的中线,
∴BF=CF,A说法正确,不符合题意;
∵AD是高,
∴∠ADC=90°,
∴∠C+∠CAD=90°,B说法正确,不符合题意;
∵AE是角平分线,
∴∠BAE=∠CAE,C说法错误,符合题意;
∵BF=CF,
∴S△ABC=2S△ABF,D说法正确,不符合题意;
故选:C.
【点评】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.
【变式1-3】(2019秋 澧县期中)如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD于H,下列判断,其中正确的个数是( )
①BG是△ABD中边AD上的中线;
②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;
③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线.
A.0 B.1 C.2 D.3
【分析】根据三角形的高,中线,角平分线的定义可知.
【解答】解:①G为AD中点,所以BG是△ABD边AD上的中线,故正确;
②因为∠1=∠2,所以AD是△ABC中∠BAC的角平分线,AG是△ABE中∠BAE的角平分线,故错误;
③因为CF⊥AD于H,所以CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线,故正确.
故选:C.
【点评】熟记三角形的高,中线,角平分线是解决此类问题的关键.
【考点2 三角形中线的应用】
【方法点拨】解决此类问题的关键是三角形的中线将三角形分成面积相等的两部分;两个三角形的高相同时,面积的比等于它们的底边的比.
【例2】(2020春 朝阳区校级期末)如图,△ABC中,点D是AB边上的中点,点E是BC边上的中点,若S△ABC=12,则图中阴影部分的面积是( )
A.6 B.4 C.3 D.2
【分析】根据S△ABC=12和点D是AB边上的中点,点E是BC边上的中点,即可得到△DEC的面积,从而可以解答本题.
【解答】解:∵S△ABC=12,点D是AB边上的中点,
∴S△ACD=S△BCD=6,
又∵点E是BC边上的中点,
∴S△BDE=S△CDE=3,
即阴影部分的面积是3,
故选:C.
【点评】本题考查三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.
【变式2-1】(2020春 徐州期中)如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为( )
A.2cm2 B.3cm2 C.4cm2 D.5cm2
【分析】根据三角形的中线平分三角形的面积,可得△ABE、△DBE、△DCE、△AEC的面积相等,从而计算△BEC的面积,根据EF=2FC,可得结论.
【解答】解:∵D是BC的中点,
∴S△ABD=S△ADC(等底等高的三角形面积相等),
∵E是AD的中点,
∴S△ABE=S△BDE,S△ACE=S△CDE(等底等高的三角形面积相等),
∴S△ABE=S△DBE=S△DCE=S△AEC,
∴S△BECS△ABC=6cm2.
∵EF=2FC,
∴S△BEFS△BCE,
∴S△BEFS△BEC=4cm2.
故选:C.
【点评】此题考查了三角形的面积,根据三角形中线将三角形的面积分成相等的两部分解答.
【变式2-2】(2020春 遂宁期末)如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=16,S△AGE=6,则△ABC的面积是( )
A.42 B.48 C.54 D.60
【分析】根据两个三角形的高相同时,面积的比等于它们的底边的比,求出S△CGD,S△CGE的大小,进而求出S△BCE的大小;然后根据三角形的中线将三角形分成面积相等的两部分,用S△BCE的面积乘以2,求出△ABC的面积即可.
【解答】解:∵BD=2DC,
∴S△CGDS△BGD16=8;
∵E是AC的中点,
∴S△CGE=S△BGE=6,
∴S△BCE=S△BGD+S△CGD+S△CGE
=16+8+6
=30
∴△ABC的面积是:30×2=60.
故选:D.
【点评】此题主要考查了三角形的面积的求法,以及三角形的中线的特征,解答此题的关键是要明确:三角形的中线将三角形分成面积相等的两部分;两个三角形的高相同时,面积的比等于它们的底边的比.
【变式2-3】(2019秋 宁阳县期末)如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是( )
A.3 B.4 C.5 D.6
【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.
【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,AG:GD=2:1,
∴AE=CE,
∴S△CGE=S△AGES△ACF,S△BGF=S△BGDS△BCF,
∵S△ACF=S△BCFS△ABC12=6,
∴S△CGES△ACF6=2,S△BGFS△BCF6=2,
∴S阴影=S△CGE+S△BGF=4.
故选:B.
【点评】本题考查了三角形的面积,三角形中线的性质,正确的识别图形是解题的关键.
【考点3 三角形的三边关系】
【方法点拨】掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.
【例3】(2020春 滨湖区期中)4根小木棒的长度分别为2cm,3cm,4cm和5cm.用其中3根搭三角形,可以搭出不同三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】先写出不同的分组,再根据三角形的任意两边之和大于第三边对各组数据进行判断即可得解.
【解答】解:任取3根可以有一下几组:
①2cm,3cm,4cm,能够组成三角形,
②2cm,3cm,5cm,
∵2+3=5,
∴不能组成三角形;
③2cm,4cm,5cm,
能组成三角形,
③3cm,4cm,5cm,
能组成三角形,
∴可以搭出不同的三角形3个.
故选:C.
【点评】本题考查了三角形的三边关系,按照一定的顺序进行分组才能做到不重不漏.
【变式3-1】(2020 绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
A.4 B.5 C.6 D.7
【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.
【解答】解:①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
③长度分别为2、7、3,不能构成三角形;
④长度分别为6、3、3,不能构成三角形;
综上所述,得到三角形的最长边长为5.
故选:B.
【点评】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.
【变式3-2】(2020春 和平区校级期中)已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|= .
【分析】根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.
【解答】解:∵a,b,c是一个三角形的三条边长,
∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,
|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,
故答案为:a﹣3b+c.
【点评】考查了三角形三边关系,绝对值的性质,整式的加减,关键是得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0.
【变式3-3】(2020春 如东县期末)△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有 个.
【分析】结合三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”和已知条件,进行分析.
【解答】解:根据已知条件和三角形的三边关系,得
当a=8,b=7时,则c=6或5或4或3或2;
当a=8,b=6时,则c=5或4或3;
当a=8,b=5时,则c=4.
则满足条件的三角形共有9个.
故答案为:9.
【点评】考查了三角形三边关系,此题要能够把已知条件和三角形的三边关系结合起来考虑.
【考点4 利用三角形的高和角平分线性质求角】
【例4】(2020春 盱眙县期末)如图①,AD平分∠BAC,AE⊥BC,∠B=38°,∠C=64°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,∠B=α,∠C=β(α<β),请用α、β的代数式表示∠DFE.
【分析】(1)求出∠ADE的度数,利用∠DAE=90°﹣∠ADE即可求出∠DAE的度数.
(2)求出∠ADE的度数,利用∠DFE=90°﹣∠ADE即可求出∠DAE的度数.
【解答】解:(1)∵∠B=38°,∠C=64°,
∴∠BAC=78°,
∵AD平分∠BAC,
∴∠BAD=∠CAD=39°,
∴∠ADE=∠B+∠BAD=77°,
∵AE⊥BC,
∴∠AEB=90°,
∴∠DAE=90°﹣∠ADE=13°.
(2)∵B=α,∠C=β,
∴∠BAC=180°﹣α﹣β,
∵AD平分∠BAC,
∴∠BAD=∠CAD=90°(α+β),
∴∠ADE=∠B+∠BAD=α+90°(α+β),
∵AE⊥BC,
∴∠AEB=90°,
∴∠DFE=90°﹣∠ADE(β﹣α).
【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
【变式4-1】(2019秋 织金县期末)如图,在△ABC中,∠B<∠ACB,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,求∠E的度数;
(2)当点P在线段AD上运动时,求证:.
【分析】(1)首先根据三角形的内角和定理求得∠BAC的度数,再根据角平分线的定义求得∠DAC的度数,从而根据三角形的内角和定理即可求出∠ADC的度数,进一步求得∠E的度数;
(2)根据第(1)小题的思路即可推导这些角之间的关系.
【解答】(1)解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°.
∵AD平分∠BAC,∴∠DAC=30°.
∴∠ADC=65°.
又∵∠DPE=90°,∴∠E=25°
(2)证明:∵∠B+∠BAC+∠ACB=180°,
∴∠BAC=180°﹣(∠B+∠ACB).
∵AD平分∠BAC,
∴∠BAD∠BAC=90°(∠B+∠ACB).
∴∠ADC=∠B+∠BAD=90°(∠ACB﹣∠B).
∵PE⊥AD,∴∠DPE=90°.
∴∠ADC+∠E=90°.
∴∠E=90°﹣∠ADC,
即∠E(∠ACB﹣∠B).
【点评】此题考查三角形的内角和定理以及角平分线的定义.掌握三角形的内角和为180°,以及角平分线的性质是解决问题的关键.
【变式4-2】(2020春 工业园区期末)如图,AD、AE分别是△ABC的高和角平分线,∠B=50°,∠ACB=80°.点F在BC的延长线上,FG⊥AE,垂足为H,FG与AB相交于点G.
(1)求∠AGF的度数;
(2)求∠DAE的度数.
【分析】(1)根据三角形的内角和定理和角平分线的定义即可得到结论;
(2)根据垂直的定义得到∠ADB=90°,根据三角形的内角定理即可得到结论.
【解答】解:(1)∵∠B=50°,∠ACB=80°,
∴∠BAC=180°﹣50°﹣80°=50°,
∵AE是∠BAC的角平分线,
∴∠BAE,
∵FG⊥AE,
∴∠AHG=90°,
∴∠AGF=180°﹣90°﹣25°=65°;
(2)∵AD⊥BC,
∴∠ADB=90°,
∵∠AED=∠B+∠BAE=50°+25°=75°,
∴∠DAE=180°﹣∠AED﹣∠ADE=15°.
【点评】本题考查了三角形的内角和定理,垂直的定义,角平分线的定义,正确的识别图形是解题的关键.
【变式4-3】(2020春 邕宁区校级期末)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.
(1)如图1,若∠B=40°,∠C=62°,请说明∠DAE的度数;
(2)如图2(∠B<∠C),试说明∠DAE、∠B、∠C的数量关系;
(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.
【分析】(1)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC﹣∠EAC,即可得出;
(2)根据三角形的内角和定理,可求得∠BAC的度数,由AD是∠BAC的平分线,可得∠DAC的度数;在直角△AEC中,可求出∠EAC的度数,所以∠DAE=∠DAC﹣∠EAC,即可得出;
(3)设∠ACB=α,根据角平分线的定义得到∠CAGEAC(90°﹣α)=45°,∠BCGBCF(180°﹣α)=90°,根据三角形的内角和即可得到结论.
【解答】解:(1)∵∠B=40°,∠C=62°,
∴∠BAC=180°﹣∠B﹣∠C=180°﹣40°﹣62°=78°,
∵AD是∠BAC的平分线,
∴∠DAC∠BAC=39°,
∵AE是BC边上的高,
在直角△AEC中,
∵∠EAC=90°﹣∠C=90°﹣62°=28°,
∴∠DAE=∠DAC﹣∠EAC=39°﹣28°=11°;
(2)∵∠BAC=180°﹣∠B﹣∠C,
∵AD是∠BAC的平分线,
∴∠DAC∠BAC=90°(∠B+∠C),
∵AE是BC边上的高,
在直角△AEC中,
∵∠EAC=90°﹣∠C,
∴∠DAE=∠DAC﹣∠EAC=90°(∠B+∠C)﹣(90°﹣∠C)(∠C﹣∠B);
(3)设∠ACB=α,
∵AE⊥BC,
∴∠EAC=90°﹣α,∠BCF=180°﹣α,
∵∠CAE和∠BCF的角平分线交于点G,
∴∠CAGEAC(90°﹣α)=45°,∠BCGBCF(180°﹣α)=90°,
∴∠G=180°﹣∠GAC﹣∠ACG=180°﹣(45°)﹣α﹣(90°)=45°.
【点评】本题考查的是三角形的内角和定理,三角形的高、角平分线的性质,学生应熟练掌握三角形的高、中线和角平分线这些基本知识,能灵活运用解决问题.
【考点5 直角三角形的性质(一组垂直关系)】
【方法点拨】解决此类问题的关键是掌握同角(等角)的余角相等.
【例5】(2019春 道里区期末)如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有( )
A.2对 B.3对 C.4对 D.5对
【分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.
【解答】解:∵CD是直角△ABC斜边AB上的高,
∴∠ACB=∠ADC=∠CDB=90°,
∴∠A+∠ACD=∠ACD+∠DCB=90°,
∴∠A=∠DCB,
同理得:∠B=∠ACD,
∴相等的角一共有5对,
故选:D.
【点评】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.
【变式5-1】(2019春 滨海县期中)如图,AD⊥BC,垂足为D,点E在AC上,且∠A=30°,∠B=40°.求∠BFD和∠AEF的度数.
【分析】根据直角三角形两锐角互余求出∠C,根据三角形的外角的性质和三角形的内角和即可得到结论.
【解答】解:∵AD⊥BC,
∴∠ADC=∠ADB=90°,
∴∠C=90°﹣∠A=90°﹣30°=60°,∠BFD=90°﹣∠B=50°,
在△BCE中,∠BEC=180°﹣∠EBC﹣∠C=180°﹣40°﹣60°=80°,
∴∠AEF=180°﹣∠BEC=100°.
【点评】本题考查了直角三角形两锐角互余的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.
【变式5-2】(2019春 沭阳县期末)已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.
求证:AE平分∠CAB.
【分析】在△ADF中,利用三角形内角和定理结合对顶角相等可得出∠DAF=90°﹣∠AFD=90°﹣∠CFE,在△AEC中,利用三角形内角和定理可得出∠CAE=90°﹣∠CEF,再结合∠CFE=∠CEF可得出∠DAF=∠CAE,即AE平分∠CAB.
【解答】证明:∵CD⊥AB,
∴在△ADF中,∠DAF=90°﹣∠AFD=90°﹣∠CFE.
∵∠ACE=90°,
∴在△AEC中,∠CAE=90°﹣∠CEF.
∵∠CFE=∠CEF,
∴∠DAF=∠CAE,
即AE平分∠CAB.
【点评】本题考查了直角三角形的性质、三角形内角和定理以及角平分线的定义,利用三角形内角和定理,找出∠DAF=90°﹣∠CFE及∠CAE=90°﹣∠CEF是解题的关键.
【变式5-3】(2019春 丰台区期末)在△ABC中,∠ACB=90°,∠ABC=40°,P是射线BC上一动点(与B,C点不重合),连接AP.过点C作CD⊥AP于点D,交直线AB于点E,设∠APC=α.
(1)若点P在线段BC上,且α=60°,如图1,直接写出∠PAB的大小;
(2)若点P在线段BC上运动,如图2,求∠AED的大小(用含α的式子表示);
(3)若点P在BC的延长线上运动,且a≠50°,直接写出∠AED的大小(用含α的式子表示).
【分析】(1)根据三角形外角的的性质可得结论;
(2)根据三角形外角的性质和直角三角形两锐角互余可得结论;
(3)分情况讨论:α>50°或α<50°根据三角形内角和可得结论.
【解答】解:(1)如图1,当α=60°时,∠APC=60°,
△APB中,∠PAB=∠APC﹣∠B=60°﹣40°=20°,
(2)如图2,同(1)得:∠PAB=α﹣40°,
∵CE⊥AP,
∴∠ADE=90°,
∴∠PAB+∠AED=90°,
∴∠AED=90°﹣∠PAB=90°﹣(α﹣40°)=130°﹣α,
(3)如图3,当α>50°时,
△APC中,∠ACP=90°,∠APC=α,
∴∠CAP=90°﹣α,
∵CD⊥AP,
∴∠ADE=90°,
∴∠AED=90°﹣∠DAE=90°﹣(50°+90°﹣α)=α﹣50°,
②如图4,当α<50°时,
∴∠AED=90°﹣∠PAE=90°﹣(α+40°)=50°﹣α,
综上,∠AED为α﹣50°或50°﹣α.
【点评】本题考查了三角形外角的性质、直角三角形的两锐角互余、垂线的性质,熟练掌握这些性质是关键.
【考点6 全等形的概念及应用】
【方法点拨】解决此类问题根据能够完全重合的两个图形叫做全等形求解即可.
【例6】(2019秋 新乐市期中)下图所示的图形分割成两个全等的图形,正确的是( )
A. B. C. D.
【分析】直接利用全等图形的性质进而得出答案.
【答案】解:如图所示:图形分割成两个全等的图形,
.
故选:B.
【点睛】此题主要考查了全等图形,正确把握全等图形的性质是解题关键.
【变式6-1】(2020春 山亭区期末)下列四个图形中,属于全等图形的是( )
A.③和④ B.②和③ C.①和③ D.①②
【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.
【答案】解:①、②可以完全重合,因此全等的图形是①、②.
故选:D.
【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.
【变式6-2】(2019秋 孝义市校级月考)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).
【分析】根据能够完全重合的两个图形叫做全等形画线即可.
【答案】解:如图所示:
.
【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.
【变式6-3】(2019秋 江汉区期末)如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .
【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.
【答案】解:∵∠1和∠4所在的三角形全等,
∴∠1+∠4=90°,
∵∠2和∠3所在的三角形全等,
∴∠2+∠3=90°,
∴∠1+∠2+∠3十∠4=180°.
故答案为:180°.
【点睛】此题主要考查了全等图形,解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用.
【考点7 全等三角形性质的应用】
【方法点拨】解决此类问题要抓住全等三角形的对应边相等,对应角相等,利用线段相等或角度之间的关
系进行等量代换即可求解.
【例7】(2019秋 邳州市期中)如图,点B、E、A、D在同一条直线上,△ABC≌△DEF,AB=7,AE=2,则AD的长是( )
A.4 B.5 C.6 D.7
【分析】根据全等三角形的性质可得AB=ED,再根据等式的性质可得EB=AD,进而可得答案.
【答案】解:∵△ABC≌△DEF,
∴AB=ED,
∴AB﹣AE=DE﹣AE,
∴EB=AD,
∵AB=7,AE=2,
∴EB=5,
∴AD=5.
故选:B.
【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.
【变式7-1】(2020春 南岗区校级期中)如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为( )
A.40° B.50° C.55° D.60°
【分析】设AD与BF交于点M,要求∠DFB的大小,可以在△DFM中利用三角形的内角和定理求解,转化为求∠AMC的大小,再转化为在△ACM中求∠ACM就可以.
【答案】解:设AD与BF交于点M,
∵∠ACB=105,
∴∠ACM=180°﹣105°=75°,
∠AMC=180°﹣∠ACM﹣∠DAC=180°﹣75°﹣10°=95°,
∴∠FMD=∠AMC=95°,
∴∠DFB=180°﹣∠D﹣∠FMD=180°﹣95°﹣25°=60°.
故选:D.
【点睛】本题考查了全等三角形的性质,由已知条件,联想到所学的定理,充分挖掘题目中的结论是解题的关键.
【变式7-2】(2019秋 洛阳期中)如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为( )
A.54° B.63° C.64° D.68°
【分析】直接利用全等三角形的性质结合三角形内角和定理得出∠BAE=54°,进而得出答案.
【答案】解:∵△ABC≌△AED,∠D=135°
∴∠C=∠D=135°,AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=15°,∠D=∠C=135°,
∴∠BAC=30°,
∵∠EAC=24°,
∴∠BAE=54°,
则∠BEA的度数为:(180°﹣54°)=63°.
故选:B.
【点睛】此题主要考查了全等三角形的性质,正确得出∠BAE=54°是解题关键.
【变式7-3】(2019秋 拱墅区校级期中)若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( )
A.3 B.4 C.1或3 D.3或5
【分析】根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.
【答案】解:∵△ABC≌△DEF,AB=2,AC=4,
∴DE=AB=2,DF=AC=4,
∵△DEF的周长为奇数,
∴EF的长为奇数,
D、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;
A、当EF=3时,由选项D知,此选项错误;
B、当EF=4时,不符合EF为奇数,故本选项错误;
C、当EF=1或3时,其中1无法构成三角形,故本选项错误;
故选:D.
【点睛】本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.
【考点8 判断全等三角形的对数】
【方法点拨】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.
【例8】(2019秋 海港区期末)如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形( )
A.1对 B.2对 C.3对 D.4对
【分析】利用“SSS”可判断△ABC≌△DCB,△ABD≌△DCA,则∠BAC=∠CDB,然后可根据“AAS”判断△ABE≌△DCE.
【答案】解:∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB(SSS),△ABD≌△DCA(SSS),
∴∠BAC=∠CDB,
∵AB=CD,∠AEB=∠DEC,
∴△ABE≌△DCE(AAS).
故选:C.
【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
【变式8-1】(2020春 高新区期末)如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有( )
A.5对 B.6对 C.7对 D.8对
【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.
【答案】解:①在△AEO与△ADO中,
,
∴△AEO≌△ADO(SAS);
②∵△AEO≌△ADO,
∴OE=OD,∠AEO=∠ADO,
∴∠BEO=∠CDO.
在△BEO与△CDO中,
,
∴△BEO≌△CDO(ASA);
③∵△BEO≌△CDO,
∴BE=CD,BO=CO,OE=OD,
∴CE=BD.
在△BEC与△CDB中,
,
∴△BEC≌△CDB(SAS);
④在△AEC与△ADB中,
,
则△AEC≌△ADB(SAS);
⑤∵△AEC≌△ADB,
∴AB=AC.
在△AOB与△AOC中,
,
∴△AOB≌△AOC.
综上所述,图中全等三角形共5对.
故选:A.
【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【变式8-2】(2020春 碑林区校级期末)如图,已知A、B、C、D四点共线,AE∥DF,BE∥CF,AC=BD,则图中全等三角形有( )
A.4对 B.6对 C.8对 D.10对
【分析】由AC=BD可得AB=AC,由AE∥DF可得∠EAB=∠FDC,由BE∥CF可得∠EBC=∠FCB,根据等角的补角相等得出∠EBA=∠FCD,利用ASA得△ABE≌△DCF,进一步得其它三角形全等.
【答案】解:∵AC=BD,
∴AB=AC.
∵AE∥DF,
∴∠EAB=∠FDC.
∵BE∥CF,
∴∠EBC=∠FCB,
∴∠EBA=∠FCD.
在△ABE与△DCF中,
,
∴△ABE≌△DCF(ASA).
进一步得△EBC≌△FCB,△ECD≌△FBA,△AEC≌△DFB,△EBD≌△FCA,△AED≌△FDA,共6对.
故选:B.
【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.
【变式8-3】(2020春 碑林区校级期末)如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥AC,垂足分别是E,F.则图中共有( )对全等三角形.
A.5 B.6 C.7 D.8
【分析】根据全等三角形的判定即可求出答案.
【答案】解:∵AB∥CD,AD∥BC,
∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,
在△ABD和△CDB中,,
∴△ABD≌△CDB(ASA),
同理:△ABC≌△CDA(ASA);
∴AB=CD,BC=DA,
在△AOB和△COD中,,
∴△AOB≌△COD(AAS),
同理:△AOD≌△COB(AAS);
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠AEO=∠CFD=∠CFO=90°,
在△ABE和△CDF中,,
∴△ABE≌△CDF(AAS),
同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);
图中共有7对全等三角形;
故选:C.
【点睛】本题考查了全等三角形的判定与性质以及平行线的性质;熟练掌握全等三角形的判定方法是解题的关键.
【考点9 网格中全等三角形个数问题】
【方法点拨】认真观察图形,利用SSS判断即可.
【例9】(2019秋 沙河口区期末)如图,在4×4方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )
A.3个 B.4个 C.5个 D.6个
【分析】可以以AB和BC为公共边分别画出4个,AC不可以,故可求出结果.
【答案】解:如图所示,
△ABD,△BEC,△BFC,△BGC,共4个,
故选:B.
【点睛】本题考查了全等三角形的判定定理和性质定理,以及格点的概念等知识点,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的三条对应边分别相等.
【变式9-1】(2020春 太仓市期末)如图,△DEF的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,选取图中三个格点组成三角形,能与△DEF全等(重合的除外)的三角形个数为( )
A.1个 B.2个 C.3个 D.4个
【分析】本题考查的是用SSS判定两三角形全等.认真观察图形可得答案.
【答案】解:如图所示可作3个全等的三角形.
故选:C.
【点睛】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.
【变式9-2】(2019秋 睢宁县校级月考)如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF全等的格点三角形有( )个.
A.9 B.10 C.11 D.12
【分析】用SSS判定两三角形全等.认真观察图形可得答案.
【答案】解:如图示2×3排列的每6个小正方形上都可找出4个全等的三角形,所以共有12个全等三角形,除去△DEF外有11个与△DEF全等的三角形:
△DAF,△BGQ,△CGQ,△NFH,△AFH,△WBI,△QBI,△CKR,△KRW,△CGR,△KIW.
故选:C.
【点睛】本题主要考查了全等三角形的判定,应用SSS判定三角形全等,注意观察图形,数形结合是解决本题的关键.
【变式9-3】(2020秋 南充期中)如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有( )个.
A.4 B.16 C.23 D.24
【分析】用SSS判定两三角形全等.认真观察图形可得答案.
【答案】解:如图所示:
故选:C.
【点睛】本题考查的是SSS判定三角形全等,注意观察图形,数形结合是解决本题的又一关键.
【考点10 全等三角形的判定(选择条件)】
【方法点拨】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例10】(2020春 常熟市期末)如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是( )
A.∠A=∠B B.AC=BD C.∠ADE=∠BCE D.AD=BC
【分析】根据题目给出的条件结合全等三角形的判定定理分别分析即可.
【答案】解:A、可利用AAS证明△AOC≌△BOD,故此选项不合题意;
B、不可利用SSA证明△AOC≌△BOD,故此选项符合题意;
C、根据三角形外角的性质可得∠A=∠B,再利用AAS证明△AOC≌△BOD,故此选项不合题意;
D、根据线段的和差关系可得OA=OB,再利用SAS证明△AOC≌△BOD,故此选项不合题意.
故选:B.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【变式10-1】(2020春 崇川区期末)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.∠B=∠E,∠A=∠D D.BC=DC,∠A=∠D
【分析】根据全等三角形的判定方法分别进行判定即可.
【答案】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;
B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;
C、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;
D、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;
故选:D.
【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【变式10-2】(2020春 竞秀区校级期末)如图,AB=DC,BF=CE,需要补充一个条件,就能使△ABE≌△DCF,小明给出了四个答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正确的是( )
A.①③ B.①② C.①②③ D.①②③④
【分析】先求出BE=CF,根据平行线的性质得出∠AEF=∠DFC,再根据全等三角形的判定定理推出即可.
【答案】解:∵BF=CE,
∴BE=CF.
①AE=DF时,
在△ABE和△DCF中,,
∴△ABE≌△DCF(SSS);故①正确;
②∵AE∥DF,
∴∠AEF=∠DFC.
在△ABE和△DCF中,AB=DC,BE=CF,∠AEF=∠DFC.
不能判定△ABE与△DCF全等,故②不正确;
③∵AB∥DC,
∴∠B=∠C,
在△ABE和△DCF中,,
∴△ABE≌△DCF(SAS);故③正确;
④在△ABE和△DCF中,AB=DC,BE=CF,∠A=∠D.
不能判定△ABE与△DCF全等,故④不正确;
故选:A.
【点睛】本题考查了平行线的性质,全等三角形的判定的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键.
【变式10-3】(2020春 金牛区期末)如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD≌△CEB的有( )组.
A.4 B.3 C.2 D.1
【分析】根据题目中的条件,先把AE=CF和DF∥BE能够得到的条件写出来,然后再根据题意,写出其中的三个为条件,是否可以证明△AFD≌△CEB,本题得以解决.
【答案】解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
∵DF∥BE,
∴∠DFA=∠BEC,
∴若①②③为条件,不能证明△AFD≌△CEB,
若①②④为条件,能证明△AFD≌△CEB(AAS),
若①③④为条件,不能证明△AFD≌△CEB,
若②③④为条件,能证明△AFD≌△CEB(AAS),
故选:C.
【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用全等三角形的判定方法解答.
【考点11 全等三角形的判定(判定依据)】
【方法点拨】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例11】(2019秋 广安期末)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是( )
A.SSS B.SAS C.AAS D.HL
【分析】利用判定方法“HL”证明Rt△OMP和Rt△ONP全等,进而得出答案.
【答案】解:在Rt△OMP和Rt△ONP中,,
∴Rt△OMP≌Rt△ONP(HL),
∴∠MOP=∠NOP,
∴OP是∠AOB的平分线.
故选:D.
【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定方法并读懂题目信息是解题的关键.
【变式11-1】(2019秋 江津区期末)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.
【答案】解:∵在△ONC和△OMC中,
∴△MOC≌△NOC(SSS),
∴∠BOC=∠AOC,
故选:A.
【点睛】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
【变式11-2】(2019秋 西宁期末)如图,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB.则△OAP≌△OBP的依据不可能是( )
A.SSS B.SAS C.AAS D.HL
【分析】先根据角平分线的性质定理的逆定理得到∠POA=∠POB,然后根据三角形全等的判定方法对各选项进行判断.
【答案】解:∵PA⊥OM,PB⊥ON,
∴∠OAP=∠OBP=90°,
而PA=PB,
∴OP平分∠AOB,即∠POA=∠POB,
∴可根据:“SAS”或“AAS”或“AAS”判断△OAP≌△OBP.
故选:A.
【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.
【变式11-3】(2019秋 正定县期中)一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了( )
A.带其中的任意两块 B.带1,4或3,4就可以了
C.带1,4或2,4就可以了 D.带1,4或2,4或3,4均可
【分析】要想买一块和以前一样的玻璃,只要确定一个角及两条边的长度或两角及一边即可,
即简单的全等三角形在实际生活中的应用.
【答案】解:由图可知,带上1,4相当于有一角及两边的大小,即其形状及两边长确定,所以两块玻璃一样;
同理,3,4中有两角夹一边,同样也可得全等三角形;
2,4中,4确定了上边的角的大小及两边的方向,又由2确定了底边的方向,进而可得全等.
故选:D.
【点睛】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,能够联系实际,灵活应用所学知识.
【考点12 全等三角形的判定与性质】
【方法点拨】全等三角形的判定:全等三角形的4种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
【例12】(2020秋 普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF⊥AC交AC的延长线于点F,垂足分别为点E、F.
(1)求证:∠DBE=∠DCF.
(2)求证:BE=CF.
【分析】(1)证△ABD≌△ACD(SSS),得∠ABD=∠ACD,即可得出结论;
(2)证△BDE≌△CDF(AAS),即可得出结论.
【解答】证明:(1)在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS),
∴∠ABD=∠ACD,
∴∠DBE=∠DCF.
(2)∵DE⊥AB,DF⊥AC,
∴∠E=∠F=90°,
由(1)得:∠DBE=∠DCF,
在△BDE和△CDF中,
,
∴△BDE≌△CDF(AAS),
∴BE=CF.
【点睛】本题考查了全等三角形的判定和性质等知识;熟练掌握全等三角形的判定与性质是解题的关键.
【变式12-1】(2020秋 西华县期中)如图,三角形ABC中,AD⊥BC于D,若BD=AD,FD=CD.
(1)求证:∠FBD=∠CAD;
(2)延长BF交AC于点E,求证:BE⊥AC.
【分析】(1)由∠ADC=∠BDF=90°,根据SAS证△ADC≌△BDF,根据全等三角形的性质推出∠FBD=∠CAD即可;
(2)由余角的性质可得结论.
【解答】解:(1)∵AD⊥BC,
∴∠ADC=∠BDF=90°,
∵在△ADC和△BDF中
,
∴△ADC≌△BDF(SAS),
∴∠FBD=∠CAD;
(2)∵∠C+∠DAC=90°,∠FBD=∠CAD,
∴∠FBD+∠C=90°,
∴∠BEC=90°,
∴BE⊥AC.
【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
【变式12-2】(2020春 历下区期末)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:∠ABE=∠ACE;
(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.
【分析】(1)根据已知条件可以证明△ABD和△ACD全等,可得∠BAD=∠CAD,再证明△ABE和△ACE全等,即可得结论;
(2)结合(1)根据△ABE和△ACE全等可得BE=CE,再证明△BEG≌△CEF,即可得结论.
【答案】解:(1)证明:∵点D是BC的中点,
∴BD=CD,
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SSS),
∴∠BAD=∠CAD,
在△ABE和△ACE中,
,
∴△ABE≌△ACE(SAS),
∴∠ABE=∠ACE;
(2)如图,
由(1)知,△ABE≌△ACE,
∴BE=CE,∠ABE=∠ACE,
在△BEG和△CEF中,
,
∴△BEG≌△CEF(ASA),
∴EG=EF.
【点睛】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.
【变式12-3】(2020秋 覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.
(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;
(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.
【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA;
(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,进而由ASA就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论.
【解答】解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵BD⊥m,CE⊥m,
∴∠ADB=∠CEA=90°,
∴∠BAD+∠ABD=90°,
∴∠ABD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(AAS);
(2)DE=BD+CE.
理由是:如图②,∵∠BDA=∠AEC=∠BAC,
∴由三角形内角和及平角性质,得:
∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,
∴∠ABD=∠CAE,∠BAD=∠ACE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(ASA),
∴BD=AE,AD=CE,
∴DE=AD+AE=BD+CE.
【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.
【考点13 全等三角形中的动点问题】
【例13】(2019春 平阴县期末)如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.
(1)用含t的式子表示PC的长为 ;
(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?
【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;
(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.
(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度.
【答案】解:(1)BP=2t,则PC=BC﹣BP=12﹣2t;
故答案为(12﹣2t)cm.
(2)当t=2时,BP=CQ=2×2=4厘米,
∵BD=8厘米.
又∵PC=BC﹣BP,BC=12厘米,
∴PC=12﹣4=8厘米,
∴PC=BD,
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,,
∴△BPD≌△CQP(SAS);
③∵vP≠vQ,
∴BP≠CQ,
又∵△BPD≌△CPQ,∠B=∠C,
∴BP=PC=6cm,CQ=BD=8cm,
∴点P,点Q运动的时间t3秒,
∴VQ厘米/秒.
即点Q的运动速度是厘米/秒时,能够使三角形BPD与三角形CQP全等.
【点睛】此题考查了全等三角形的判定,主要运用了路程=速度×时间的公式,要求熟练运用全等三角形的判定和性质.
【变式13-1】(2019秋 德惠市期中)如图,在△ABC中,∠ACB=90,AC=6,BC=8.点P从点A出发,沿折线AC﹣﹣CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):
(1)当P、Q两点相遇时,求t的值;
(2)在整个运动过程中,求CP的长(用含t的代数式表示);
(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.
【分析】(1)由题意得t+3t=6+8,即可求得P、Q两点相遇时,t的值;
(2)根据题意即可得出CP的长为;
(3)分两种情况讨论得出关于t的方程,解方程求得t的值,进而即可求得CQ的长.
【答案】解:(1)由题意得t+3t=6+8,
解得t(秒),
当P、Q两点相遇时,t的值为秒;
(2)由题意可知AP=t,
则CP的长为;
(3)当P在AC上,Q在BC上时,
∵∠ACB=90,
∴∠PCE+∠QCF=90°,
∵PE⊥l于E,QF⊥l于F.
∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,
∴∠EPC=∠QCF,
∴△PCE≌△CQF,
∴PC=CQ,
∴6﹣t=8﹣3t,解得t=1,
∴CQ=8﹣3t=5;
当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,
由题意得,6﹣t=3t﹣8,
解得t=3.5,
∴CQ=3t﹣8=2.5,
当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,
综上,当△PEC与△QFC全等时,满足条件的CQ的长为5或2.5或6.
【点睛】本题考查了三角形全等的判定和性质,根据题意得出关于t的方程是解题的关键.
【变式13-2】(2019秋 花都区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.
(1)如图(1),当t= 或 时,△APC的面积等于△ABC面积的一半;
(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.
【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;
(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,②当点P在AB上,分别求出P移动的距离和时间,进而求出Q的移动速度.
【答案】解:(1)①当点P在BC上时,如图①﹣1,
若△APC的面积等于△ABC面积的一半;则CPBCcm,
此时,点P移动的距离为AC+CP=12,
移动的时间为:3秒,
②当点P在BA上时,如图①﹣2
若△APC的面积等于△ABC面积的一半;则PDBC,即点P为BA中点,
此时,点P移动的距离为AC+CB+BP=12+9cm,
移动的时间为:3秒,
故答案为:或;
(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;
①当点P在AC上,如图②﹣1所示:
此时,AP=4,AQ=5,
∴点Q移动的速度为5÷(4÷3)cm/s,
②当点P在AB上,如图②﹣2所示:
此时,AP=4,AQ=5,
即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,
∴点Q移动的速度为31÷(32÷3)cm/s,
综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.
【点睛】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.
【变式13-3】(2019秋 内乡县期末)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.
【分析】(1)利用AP=BQ=2,BP=AC,可根据“SAS”证明△ACP≌△BPQ;则∠C=∠BPQ,然后证明∠APC+∠BPQ=90°,从而得到PC⊥PQ;
(2)讨论:若△ACP≌△BPQ,则AC=BP,AP=BQ,即5=7﹣2t,2t=xt;②若△ACP≌△BQP,则AC=BQ,AP=BP,即5=xt,2t=7﹣2t,然后分别求出x即可.
【答案】解:(1)△ACP≌△BPQ,PC⊥PQ.
理由如下:∵AC⊥AB,BD⊥AB,
∴∠A=∠B=90°,
∵AP=BQ=2,
∴BP=5,
∴BP=AC,
在△ACP和△BPQ中
,
∴△ACP≌△BPQ(SAS);
∴∠C=∠BPQ,
∵∠C+∠APC=90°,
∴∠APC+∠BPQ=90°,
∴∠CPQ=90°,
∴PC⊥PQ;
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt
解得:x=2,t=1;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t
解得:x,t.
综上所述,当△ACP与△BPQ全等时x的值为2或.
【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
【考点14 尺规作图】
【例14】(2020春 薛城区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):
(1)作∠A=∠1;
(2)在∠A的两边分别作AM=AN=a;
(3)连接MN.
【分析】先以A为圆心,a为半径画弧,即可作∠A=∠1,则AM=AN=a;最后连接MN即可.
【解答】解:如图所示:
【点评】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图的方法.
【变式14-1】(2019春 雁塔区校级期末)已知∠α,线段a,b,求作:△ABC,使∠B=∠α,AB=2a,BC=b.(要求:用直尺和圆规作图,保留作图痕迹,不写作法及证明)
【分析】作∠MBN=∠α,然后在BM、BN上分别截取BA=2a,BC=b,从而得到△ABC.
【解答】解:如图,△ABC为所作.
【点睛】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
【变式14-2】(2020春 薛城区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):
(1)作∠A=∠1;
(2)在∠A的两边分别作AM=AN=a;
(3)连接MN.
【分析】先以A为圆心,a为半径画弧,即可作∠A=∠1,则AM=AN=a;最后连接MN即可.
【解答】解:如图所示:
【点睛】本题考查作图﹣基本作图,解题的关键是熟练掌握五种基本作图的方法.
【变式14-3】(2019春 平川区期末)已知∠α和线段a,求作△ABC,使∠A=∠α,∠B=2∠α,AB=2α.(保留作图痕迹,不写作法)
【分析】先作AB=2a,再作∠A=∠α,然后作∠B=2∠α即可.
【解答】解:如图,△ABC为所作.
【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).北师大版七年级数学下学期 第四章 三角形考点梳理
【考点1 三角形中“三线”概念辨析】
【方法点拨】解决此类问题的关键是掌握三角形的角平分线,中线,线段的定义;根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上进行判断.
【例1】(2020春 迁西县期末)下列说法错误的是( )
A.三角形的高、中线、角平分线都是线段
B.三角形的三条中线都在三角形内部
C.锐角三角形的三条高一定交于同一点
D.三角形的三条高、三条中线、三条角平分线都交于同一点
【变式1-1】(2019春 平昌县期末)下列说法中错误的是( )
A.三角形三条高至少有一条在三角形的内部
B.三角形三条中线都在三角形的内部
C.三角形三条角平分线都在三角形的内部
D.三角形三条高都在三角形的内部
【变式1-2】(2020春 商水县期末)如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是( )
A.BF=CF B.∠C+∠CAD=90°
C.∠BAF=∠CAF D.S△ABC=2S△ABF
【变式1-3】(2019秋 澧县期中)如图,△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,且CF⊥AD于H,下列判断,其中正确的个数是( )
①BG是△ABD中边AD上的中线;
②AD既是△ABC中∠BAC的角平分线,也是△ABE中∠BAE的角平分线;
③CH既是△ACD中AD边上的高线,也是△ACH中AH边上的高线.
A.0 B.1 C.2 D.3
【考点2 三角形中线的应用】
【方法点拨】解决此类问题的关键是三角形的中线将三角形分成面积相等的两部分;两个三角形的高相同时,面积的比等于它们的底边的比.
【例2】(2020春 朝阳区校级期末)如图,△ABC中,点D是AB边上的中点,点E是BC边上的中点,若S△ABC=12,则图中阴影部分的面积是( )
A.6 B.4 C.3 D.2
【变式2-1】(2020春 徐州期中)如图,在△ABC中,点D、E分别为BC、AD的中点,EF=2FC,若△ABC的面积为12cm2,则△BEF的面积为( )
A.2cm2 B.3cm2 C.4cm2 D.5cm2
【变式2-2】(2020春 遂宁期末)如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=16,S△AGE=6,则△ABC的面积是( )
A.42 B.48 C.54 D.60
【变式2-3】(2019秋 宁阳县期末)如图,△ABC的三边的中线AD,BE,CF的公共点为G,且AG:GD=2:1,若S△ABC=12,则图中阴影部分的面积是( )
A.3 B.4 C.5 D.6
【考点3 三角形的三边关系】
【方法点拨】掌握三角形两边的和大于第三边,三角形两边的差小于第三边是解题关键.
【例3】(2020春 滨湖区期中)4根小木棒的长度分别为2cm,3cm,4cm和5cm.用其中3根搭三角形,可以搭出不同三角形的个数是( )
A.1个 B.2个 C.3个 D.4个
【变式3-1】(2020 绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
A.4 B.5 C.6 D.7
【变式3-2】(2020春 和平区校级期中)已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|= .
【变式3-3】(2020春 如东县期末)△ABC三边的长a、b、c均为整数,a>b>c,a=8,则满足条件的三角形共有 个.
【考点4 利用三角形的高和角平分线性质求角】
【例4】(2020春 盱眙县期末)如图①,AD平分∠BAC,AE⊥BC,∠B=38°,∠C=64°.
(1)求∠DAE的度数;
(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,∠B=α,∠C=β(α<β),请用α、β的代数式表示∠DFE.
【变式4-1】(2019秋 织金县期末)如图,在△ABC中,∠B<∠ACB,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,求∠E的度数;
(2)当点P在线段AD上运动时,求证:.
【变式4-2】(2020春 工业园区期末)如图,AD、AE分别是△ABC的高和角平分线,∠B=50°,∠ACB=80°.点F在BC的延长线上,FG⊥AE,垂足为H,FG与AB相交于点G.
(1)求∠AGF的度数;
(2)求∠DAE的度数.
【变式4-3】(2020春 邕宁区校级期末)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.
(1)如图1,若∠B=40°,∠C=62°,请说明∠DAE的度数;
(2)如图2(∠B<∠C),试说明∠DAE、∠B、∠C的数量关系;
(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,求∠G的度数.
【考点5 直角三角形的性质(一组垂直关系)】
【方法点拨】解决此类问题的关键是掌握同角(等角)的余角相等.
【例5】(2019春 道里区期末)如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有( )
A.2对 B.3对 C.4对 D.5对
【变式5-1】(2019春 滨海县期中)如图,AD⊥BC,垂足为D,点E在AC上,且∠A=30°,∠B=40°.求∠BFD和∠AEF的度数.
【变式5-2】(2019春 沭阳县期末)已知:如图,在△ABC中,∠ACB=90°,CD是高,AE是△ABC内部的一条线段,AE交CD于点F,交CB于点E,且∠CFE=∠CEF.
求证:AE平分∠CAB.
【变式5-3】(2019春 丰台区期末)在△ABC中,∠ACB=90°,∠ABC=40°,P是射线BC上一动点(与B,C点不重合),连接AP.过点C作CD⊥AP于点D,交直线AB于点E,设∠APC=α.
(1)若点P在线段BC上,且α=60°,如图1,直接写出∠PAB的大小;
(2)若点P在线段BC上运动,如图2,求∠AED的大小(用含α的式子表示);
(3)若点P在BC的延长线上运动,且a≠50°,直接写出∠AED的大小(用含α的式子表示).
【考点6 全等形的概念及应用】
【方法点拨】解决此类问题根据能够完全重合的两个图形叫做全等形求解即可.
【例6】(2019秋 新乐市期中)下图所示的图形分割成两个全等的图形,正确的是( )
A. B. C. D.
【变式6-1】(2020春 山亭区期末)下列四个图形中,属于全等图形的是( )
A.③和④ B.②和③ C.①和③ D.①②
【变式6-2】(2019秋 孝义市校级月考)如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).
【变式6-3】(2019秋 江汉区期末)如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .
【考点7 全等三角形性质的应用】
【方法点拨】解决此类问题要抓住全等三角形的对应边相等,对应角相等,利用线段相等或角度之间的关
系进行等量代换即可求解.
【例7】(2019秋 邳州市期中)如图,点B、E、A、D在同一条直线上,△ABC≌△DEF,AB=7,AE=2,则AD的长是( )
A.4 B.5 C.6 D.7
【变式7-1】(2020春 南岗区校级期中)如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为( )
A.40° B.50° C.55° D.60°
【变式7-2】(2019秋 洛阳期中)如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为( )
A.54° B.63° C.64° D.68°
【变式7-3】(2019秋 拱墅区校级期中)若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( )
A.3 B.4 C.1或3 D.3或5
【考点8 判断全等三角形的对数】
【方法点拨】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.
【例8】(2019秋 海港区期末)如图,AC、BD相交于点E,AB=DC,AC=DB,则图中有全等三角形( )
A.1对 B.2对 C.3对 D.4对
【变式8-1】(2020春 高新区期末)如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有( )
A.5对 B.6对 C.7对 D.8对
【变式8-2】(2020春 碑林区校级期末)如图,已知A、B、C、D四点共线,AE∥DF,BE∥CF,AC=BD,则图中全等三角形有( )
A.4对 B.6对 C.8对 D.10对
【变式8-3】(2020春 碑林区校级期末)如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥AC,垂足分别是E,F.则图中共有( )对全等三角形.
A.5 B.6 C.7 D.8
【考点9 网格中全等三角形个数问题】
【方法点拨】认真观察图形,利用SSS判断即可.
【例9】(2019秋 沙河口区期末)如图,在4×4方形网格中,与△ABC有一条公共边且全等(不与△ABC重合)的格点三角形(顶点在格点上的三角形)共有( )
A.3个 B.4个 C.5个 D.6个
【变式9-1】(2020春 太仓市期末)如图,△DEF的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫做格点三角形,选取图中三个格点组成三角形,能与△DEF全等(重合的除外)的三角形个数为( )
A.1个 B.2个 C.3个 D.4个
【变式9-2】(2019秋 睢宁县校级月考)如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF全等的格点三角形有( )个.
A.9 B.10 C.11 D.12
【变式9-3】(2020秋 南充期中)如图为正方形网格,顶点在格点上的三角形称为格点三角形,每个小正方形均为边长为1的正方形,图中与△ABC全等的格点三角形(不含△ABC)共有( )个.
A.4 B.16 C.23 D.24
【考点10 全等三角形的判定(选择条件)】
【方法点拨】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例10】(2020春 常熟市期末)如图,点C、D分别在BO、AO上,AC、BD相交于点E,若CO=DO,则再添加一个条件,仍不能证明△AOC≌△BOD的是( )
A.∠A=∠B B.AC=BD C.∠ADE=∠BCE D.AD=BC
【变式10-1】(2020春 崇川区期末)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是( )
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.∠B=∠E,∠A=∠D D.BC=DC,∠A=∠D
【变式10-2】(2020春 竞秀区校级期末)如图,AB=DC,BF=CE,需要补充一个条件,就能使△ABE≌△DCF,小明给出了四个答案:①AE=DF;②AE∥DF;③AB∥DC;④∠A=∠D,其中正确的是( )
A.①③ B.①② C.①②③ D.①②③④
【变式10-3】(2020春 金牛区期末)如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD≌△CEB的有( )组.
A.4 B.3 C.2 D.1
【考点11 全等三角形的判定(判定依据)】
【方法点拨】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
【例11】(2019秋 广安期末)如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是( )
A.SSS B.SAS C.AAS D.HL
【变式11-1】(2019秋 江津区期末)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是( )
A.SSS B.SAS C.ASA D.AAS
【变式11-2】(2019秋 西宁期末)如图,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB.则△OAP≌△OBP的依据不可能是( )
A.SSS B.SAS C.AAS D.HL
【变式11-3】(2019秋 正定县期中)一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了( )
A.带其中的任意两块 B.带1,4或3,4就可以了
C.带1,4或2,4就可以了 D.带1,4或2,4或3,4均可
【考点12 全等三角形的判定与性质】
【方法点拨】全等三角形的判定:全等三角形的4种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
【例12】(2020秋 普陀区期中)如图,已知AB=AC,BD=CD,过点D作DE⊥AB交AB的延长线于点E、DF⊥AC交AC的延长线于点F,垂足分别为点E、F.
(1)求证:∠DBE=∠DCF.
(2)求证:BE=CF.
【变式12-1】(2020秋 西华县期中)如图,三角形ABC中,AD⊥BC于D,若BD=AD,FD=CD.
(1)求证:∠FBD=∠CAD;
(2)延长BF交AC于点E,求证:BE⊥AC.
【变式12-2】(2020春 历下区期末)如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:∠ABE=∠ACE;
(2)如图2,若BE的延长线交AC于点F,CE的延长线交AB于点G.求证:EF=EG.
【变式12-3】(2020秋 覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.
(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;
(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.
【考点13 全等三角形中的动点问题】
【例13】(2019春 平阴县期末)如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.
(1)用含t的式子表示PC的长为 ;
(2)若点Q的运动速度与点P的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;
(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?
【变式13-1】(2019秋 德惠市期中)如图,在△ABC中,∠ACB=90,AC=6,BC=8.点P从点A出发,沿折线AC﹣﹣CB以每秒1个单位长度的速度向终点B运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F.设点P的运动时间为t(秒):
(1)当P、Q两点相遇时,求t的值;
(2)在整个运动过程中,求CP的长(用含t的代数式表示);
(3)当△PEC与△QFC全等时,直接写出所有满足条件的CQ的长.
【变式13-2】(2019秋 花都区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.
(1)如图(1),当t= 或 时,△APC的面积等于△ABC面积的一半;
(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.
【变式13-3】(2019秋 内乡县期末)如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.
【考点14 尺规作图】
【例14】(2020春 薛城区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):
(1)作∠A=∠1;
(2)在∠A的两边分别作AM=AN=a;
(3)连接MN.
【变式14-1】(2019春 雁塔区校级期末)已知∠α,线段a,b,求作:△ABC,使∠B=∠α,AB=2a,BC=b.(要求:用直尺和圆规作图,保留作图痕迹,不写作法及证明)
【变式14-2】(2020春 薛城区期末)如图,已知∠1与线段a,用直尺和圆规按下列步骤作图(保留作图痕迹,不写作法):
(1)作∠A=∠1;
(2)在∠A的两边分别作AM=AN=a;
(3)连接MN.
【变式14-3】(2019春 平川区期末)已知∠α和线段a,求作△ABC,使∠A=∠α,∠B=2∠α,AB=2α.(保留作图痕迹,不写作法)