课题 排列 (四) 授课日期 年 月 日
1课时
三维目标 知识与技能 切实学会用排列数公式计算和解决简单的实际问题;
(体现高考考点的落实) 过程与方法 会用“捆绑法”和“插入法”解决相邻和不相邻问题的应用题;
情感、态度、价值观 进一步培养分析问题、解决问题的能力,同时让学生学会一题多解
教学重点 “捆绑法”和“插入法”应用的条件和方法
教学难点 “捆绑法”和“插入法”应用的条件和方法
授课类型 新授课
教学设计(包括以下内容:①预习 ②设置问题、回答问题 ③合作探究 ④课堂训练)
共案设计(经集体讨论形成) 个案设计
教师活动 学生活动 (根据个人教学风格和学生特点形成)
一、复习引入: 教师自定
二、讲解范例: 例1 从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2. 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种(2)甲、乙和丙三个同学都相邻的排法共有多少种?解:方法同上,一共有=720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有=960种方法解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,所以,丙不能站在排头和排尾的排法有种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有=960种方法.(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:(种)说明:对于相邻问题,常用“捆绑法”(先捆后松).例3.7位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种?解法一:(排除法);解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法.(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有=1440种.说明:对于不相邻问题,常用“插空法”(特殊元素后考虑). 例1解法一:(从特殊位置考虑);解法二:(从特殊元素考虑)若选:;若不选:,则共有种;解法三:(间接法)例4.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)先将男生排好,有种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,有种排法故本题的排法有(种);(2)方法1:;方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法故本题的结论为(种)
三、课堂练习: 1.停车场上有一排七个停车位,现有四辆汽车需要停放,若要使三个空位连在一起,则停放方法数为( ) . . . . 2.五种不同商品在货架上排成一排,其中两种必须连排,而两种不能连排,则不同的排法共有( ).12种 .20种 .24种 .48种 3.6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有 ( ). . . . 4.某人射出8发子弹,命中4发,若命中的4发中仅有3发是连在一起的,那么该人射出的8发,按“命中”与“不命中”报告结果,不同的结果有( ).720种 .480种 .24种 .20种 5.设且,则在直角坐标系中满足条件的点共有 个6.7人站一排,甲不站排头,也不站排尾,不同的站法种数有 种;甲不站排头,乙不站排尾,不同站法种数有 种7.一部电影在相邻5个城市轮流放映,每个城市都有3个放映点,如果规定必须在一个城市的各个放映点放映完以后才能转入另一个城市,则不同的轮映次序有 种(只列式,不计算).8.一天课表中,6节课要安排3门理科,3门文科,要使文、理科间排,不同的排课方法有 种;要使3门理科的数学与物理连排,化学不得与数学、物理连排,不同的排课方法有 种9.某商场中有10个展架排成一排,展示10台不同的电视机,其中甲厂5台,乙厂3台,丙厂2台,若要求同厂的产品分别集中,且甲厂产品不放两端,则不同的陈列方式有多少种?10.用数字0,1,2,3,4,5组成没有重复数字的四位数,其中(1)三个偶数字连在一起的四位数有多少个?(2)十位数字比个位数字大的有多少个?11.在上题中,含有2和3并且2和3不相邻的四位数有多少个? 答案:1. C 2. C 3. D 4. D 5. 6 6. 3600, 3720 7. 8. 72, 144 9. 10.⑴30; ⑵15011. 66种
课堂小结 1.对有约束条件的排列问题,应注意如下类型: ①某些元素不能在或必须排列在某一位置;②某些元素要求连排(即必须相邻);③某些元素要求分离(即不能相邻).2.基本的解题方法:①有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优限法);②某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;③某些元素不相邻排列时,可以先排其他元素,再将这些不相邻元素插入空挡,这种方法称为“插空法”;④在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻求有效的解题途径,这是学好排列问题的根基
板书设计
教学反思
教研组长评价 共案:个案:等级: 签字: 时间:课题 排列 3 授课日期 年 月 日
课时
三维目标 知识与技能 熟练掌握排列数公式;
(体现高考考点的落实) 过程与方法 能运用已学的排列知识,正确地解决简单的实际问题
情感、态度、价值观 熟悉并掌握一些分析和解决排列问题的基本方法
教学重点 分析和解决排列问题的基本方法
教学难点 分析和解决排列问题的基本方法
授课类型 新授课
教学设计(包括以下内容:①预习 ②设置问题、回答问题 ③合作探究 ④课堂训练)
共案设计(经集体讨论形成) 个案设计
教师活动 学生活动 (根据个人教学风格和学生特点形成)
一、复习引入: 教师自定
二、讲解范例: 例1.(1)有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?例2.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?例3.将位司机、位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?例3分析:解决这个问题可以分为两步,第一步:把位司机分配到四辆不同班次的公共汽车上,即从个不同元素中取出个元素排成一列,有种方法;第二步:把位售票员分配到四辆不同班次的公共汽车上,也有种方法,利用分步计数原理即得分配方案的种数解:由分步计数原理,分配方案共有(种)
答:共有576种不同的分配方案例4.用0到9这10个数字,可以组成多少个没有重复数字的三位数?例5.(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列=5040.(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作:余下的6个元素的全排列——=720.(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?解:根据分步计数原理:第一步 甲、乙站在两端有种;第二步 余下的5名同学进行全排列有种,所以,共有=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有=2400种排列方法解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有-+=2400种. 例1.解:(1)从5本不同的书中选出3本分别送给3名同学,对应于从5个元素中任取3个元素的一个排列,因此不同送法的种数是:,所以,共有60种不同的送法(2)由于有5种不同的书,送给每个同学的1本书都有5种不同的选购方法,因此送给3名同学,每人各1本书的不同方法种数是:,所以,共有125种不同的送法说明:本题两小题的区别在于:第(1)小题是从5本不同的书中选出3本分送给3位同学,各人得到的书不同,属于求排列数问题;而第(2)小题中,给每人的书均可以从5种不同的书中任选1种,各人得到那种书相互之间没有联系,要用分步计数原理进行计算例2解:分3类:第一类用1面旗表示的信号有种;第二类用2面旗表示的信号有种;第三类用3面旗表示的信号有种,由分类计数原理,所求的信号种数是:,答:一共可以表示15种不同的信号例4解法1:用分步计数原理:所求的三位数的个数是:解法2:符合条件的三位数可以分成三类:每一位数字都不是0的三位数有个,个位数字是0的三位数有个,十位数字是0的三位数有个,由分类计数原理,符合条件的三位数的个数是:.解法3:从0到9这10个数字中任取3个数字的排列数为,其中以0为排头的排列数为,因此符合条件的三位数的个数是-.
三、课堂练习: 1.将1,2,3,4填入标号为1,2,3,4的四个方格里,没格填一个数字,则每个方格的标号与所填的数字均不相同的填法( )种. . 6 . 9 . 11 . 232.有5列火车停在某车站并排的五条轨道上,若快车A不能停在第三条轨道上,货车B不能停在第一条轨道上,则五列火车的停车方法有( )种. .78 .72 .120 .96 3.由0,3,5,7这五个数组成无重复数字的三位数,其中是5的倍数的共有多少个( ).9 .21 . 24 .42 4.从七个数中,每次选不重复的三个数作为直线方程的系数,则倾斜角为钝角的直线共有( )条. . 14 .30 . 70 .60 5.从4种蔬菜品种中选出3种,分别种在不同土质的3块土地上进行实验,有 _____种不同的种植方法 6.9位同学排成三排,每排3人,其中甲不站在前排,乙不站在后排,这样的排法种数共有 种7.(1)由数字1,2,3,4,5可以组成多少个无重复数字的正整数? (2)由数字1,2,3,4,5可以组成多少个无重复数字,并且比13000大的正整数?8.学校要安排一场文艺晚会的11个节目的出场顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2、5、7、10的位置,3个舞蹈节目要求排在第3、6、9的位置,2个曲艺节目要求排在第4、8的位置,共有多少种不同的排法?9.某产品的加工需要经过5道工序,(1)如果其中某一工序不能放在最后加工,有多少种排列加工顺序的方法?(2)如果其中某两工序不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?10.一天的课表有6节课,其中上午4节,下午2节,要排语文、数学、外语、微机、体育、地理六节课,要求上午不排体育,数学必须排在上午,微机必须排在下午,共有多少种不同的排法?11. 由数字0,1,2,3,4,(1)可组成多少个没有重复数字且比20000大的自然数?(2)2不在千位,且4不在十位的五位数有多少个? 答案:1. B 2. A 3. B 4. C 5. 24 6. 166320 7.⑴325; ⑵1148. 288 9.⑴96; ⑵36 10. 4811. (1),(2)(
课堂小结 分析和解决排列问题的基本方法;对于“在”与“不在”的问题的处理方法
板书设计
教学反思
教研组长评价 共案:个案:等级: 签字: 时间: