课题 组合 (五) 授课日期 年 月 日
课时
三维目标 知识与技能 1 对排列组合的知识有一个系统的了解,从而进一步掌握;
(体现高考考点的落实) 过程与方法 2.能运用排列组合概念及两个原理解决排列组合的综合题;
情感、态度、价值观 3.提高合理选用知识分析问题、解决问题的能力
教学重点 排列、组合综合问题
教学难点 排列、组合综合问题
授课类型 新授课
教学设计(包括以下内容:①预习 ②设置问题、回答问题 ③合作探究 ④课堂训练)
共案设计(经集体讨论形成) 个案设计
教师活动 学生活动 (根据个人教学风格和学生特点形成)
二、讲解范例: 例1.某考生打算从所重点大学中选所填在第一档次的个志愿栏内,其中校定为第一志愿;再从所一般大学中选所填在第二档次的三个志愿栏内,其中、两校必选,且在前问:此考生共有多少种不同的填表方法?例2.如图是由12个小正方形组成的矩形网格,一质点沿网格线从点到点的不同路径之中,最短路径有 条例3.圆周上有个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是多少?变式:本题构造了四边形以求得满足条件的交点,类似的,前面讲过一个问题:以一个正方体的8个顶点连成的异面直线共有 对解:以一个正方体的顶点为顶点的四面体共有=58个,每个四面体的四条棱可以组成3对异面直线,因此以一个正方体的8个顶点连成的异面直线共有3×58=174对另解:对例4.有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?解:本题实质是,前五次测试中有只正品只次品,且第五次测试的是次品例5.在一次象棋比赛中,进行单循环比赛其中有人,他们各赛了场后,因故退出了比赛,这样,这次比赛共进行了场,问:比赛开始时参赛者有多少人?解:需要考虑两种情况:第一种,因故退出比赛的两人之间没有进行比赛,则,此方程无正整数解;第二种,因故退出比赛的两人之间进行了比赛,则,解得,所以,比赛开始时参赛者有人 1 解:先填第一档次的三个志愿栏:因校定为第一档次的第一志愿,故第一档次的二、三志愿有种填法;再填第二档次的三个志愿栏:、两校有种填法,剩余的一个志愿栏有种填法由分步计数原理知,此考生不同的填表方法共有(种)2解: 总揽全局:把质点沿网格线从点A到点的最短路径分为七步,其中四步向右,三步向上,不同走法的区别在于哪三步向上,因此,本题的结论是:.3解:要使交点个数最多,则只需所有的交点都不重合显然,并不是每两条弦都在圆内有交点,但如果两条弦相交,则交点就是以这两条弦的四个端点为顶点的四边形的对角线的交点,也就是说,弦在圆内的交点与以圆上四点为顶点的四边形是一一对应的因此只需求以圆上四点为顶点的四边形的个数,即个 4思路一:设想有五个位置,先从只正品中任选只,放在前四个位置的任一个上,有种方法;再把只次品在剩下的四个位置上任意排列,有种排法故不同的情形共有种思路二:设想有五个位置,先从只次品中任选只,放在第五个位置上,有种方法;再从只正品中任选只,和剩下的只次品一起在前四个位置上任意排列,有种方法故不同的情形共有种
三、课堂练习 1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点向结点传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 ( ). . . .2.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( ). . . .3.3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有( ). . . .4.公共汽车上有位乘客,汽车沿途停靠个站,那么这位乘客不同的下车方式共有 种;如果其中任何两人都不在同一站下车,那么这位乘客不同的下车方式共有 种5.名男生和名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起 ; (2)女生互不相邻 ;(3)男女生相间 ; (4)女生按指定顺序排列 .6.有排成一行的个空位置,位女生去坐,要求任何两个女生之间都要有空位,共有 种不同的坐法7.赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法8.位同学进行网页设计比赛,决出了第1至第5名的名次、两位同学去询问名次,主考官对说:“很遗憾,你和都未拿到冠军”;对说:“你当然不会是最差的”从这个回答分析,位同学的名次排列共可能有 种不同的情况9.学校餐厅供应客饭,每位学生可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位学生有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜种10.有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到测出只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有 _______种11.圆周上有个等分点,以其中3个点为顶点的直角三角形的个数为 个 答案:1. D 2. D 3. D 4. , 5.⑴ ⑵ ⑶ ⑷ 6. 7. 8. 9. 10. 11.
课堂小结 1.解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解决一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的错误是遗漏和重复计数;2.解决计数问题的常用策略有:(1)特殊元素优先安排;(2)排列组合混合题要先选(组合)后排;(3)相邻问题捆绑处理(先整体后局部);(4)不相邻问题插空处理;(5)顺序一定问题除法处理;(6)正难则反,合理转化
板书设计
教学反思
教研组长评价 共案:个案:等级: 签字: 时间:课题 组合 (四) 授课日期 年 月 日
课时
三维目标 知识与技能 掌握排列组合一些常见的题型及解题方法,
(体现高考考点的落实) 过程与方法 能够运用两个原理及排列组合概念解决排列组合问题;
情感、态度、价值观 提高合理选用知识解决问题的能力
教学重点 排列、组合综合问题
教学难点 排列、组合综合问题
授课类型 新授课
教学设计(包括以下内容:①预习 ②设置问题、回答问题 ③合作探究 ④课堂训练)
共案设计(经集体讨论形成) 个案设计
教师活动 学生活动 (根据个人教学风格和学生特点形成)
二、讲解范例: 例1.6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)分给甲、乙、丙三人,每人至少1本 例2.身高互不相同的7名运动员站成一排,(1)其中甲、乙、丙三人自左向右从高到矮排列的排法有多少种?(2)其中甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?例3.(1) 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2) 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有种方法;(2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有种方法;第二步:从四个不同的盒中任取三个将球放入有种方法,所以,一共有=144种方法.例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为种方法例5.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况:① 若取出6,则有种方法;②若不取6,则有种方法,根据分类计数原理,一共有+=602种方法 1解:(1)根据分步计数原理得到:种;(2)分给甲、乙、丙三人,每人两本有种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有种方法.根据分步计数原理可得:,所以.因此,分为三份,每份两本一共有15种方法点评:本题是分组中的“均匀分组”问题.一般地:将个元素均匀分成组(每组个元素),共有 种方法(3)这是“不均匀分组”问题,一共有种方法.(4)在(3)的基础上再进行全排列,所以一共有种方法.(5)可以分为三类情况:①“2、2、2型”即(1)中的分配情况,有种方法;②“1、2、3型”即(4)中的分配情况,有种方法;③“1、1、4型”,有种方法,所以,一共有90+360+90=540种方法.2解:(1)(法一):设想有7个位置,先将其他4人排好,有种排法;再将甲、乙、丙三人自左向右从高到矮排在剩下的3个位置上,只有1种排法,根据分步计数原理,一共有种方法(法二):设想有7个位置,先将甲、乙、丙三人自左向右从高到矮排在其中的3个位置上,有 种排法;将其他4人排在剩下的4个位置上,有种排法;根据分步计数原理,一共有种方法. (2)(插空法)先将其余4个同学进行全排列一共有种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有种方法.根据分步计数原理,一共有种方法.
三、课堂练习: 1.某班元旦联欢会原定的个学生节目已排成节目单,开演前又增加了两个教师节目如果将这两个教师节目插入原节目单中,那么不同插法的种数为. . . .2.从人中选派人到个不同的交通岗的个中参加交通协管工作,则不同的选派方法有 ( ) . . . . 3.某班分成个小组,每小组人,现要从中选出人进行个不同的化学实验,且每组至多选一人,则不同的安排方法种数是 ( ) . . . . 4.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 .5.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法6.一个集合有5个元素,则该集合的非空真子集共有 个7.平面内有两组平行线,一组有条,另一组有条,这两组平行线相交,可以构成 个平行四边形8.空间有三组平行平面,第一组有个,第二组有个,第三组有个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体9.在某次数学考试中,学号为的同学的考试成绩,且满足,则这四位同学的考试成绩的所有可能情况有 种10.某人制订了一项旅游计划,从个旅游城市中选择个进行游览如果其中的城市、必选,并且在旅游过程中必须按先后的次序经过、两城市(、两城市可以不相邻),则不同的游览路线有 种11.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法12.某兴趣小组有名男生,名女生:(1)从中选派名学生参加一次活动,要求必须有名男生,名女生,且女生甲必须在内,有 种选派方法;(2)从中选派名学生参加一次活动, 要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组人,有 种不同分法 答案:1. A 2. D 3. C 4. 5. 6. 7. 8. 9. 10. 11. 12.⑴ ⑵ ⑶
课堂小结 1.按元素的性质进行分类、按事件发生的连续过程分步,是处理组合应用题的基本思想方法;2.对于有限制条件的问题,要优先安排特殊元素、特殊位置;3.对于含“至多”、“至少”的问题,宜用排除法或分类解决;4.需要注意的是,均匀分组(不计组的顺序)问题不是简单的组合问题,如:将个人分成 组,每组一个人,显然只有种分法,而不是种 一般地,将个不同元素均匀分成组,有种分法;5.按指定的一种顺序排列的问题,实质是组合问题
板书设计
教学反思
教研组长评价 共案:个案:等级: 签字: 时间: