《数与代数--行程问题》
一、选择题(共8小题,每小题2分,共16分)
1.某人小时步行千米,求步行一千米需要多少小时?算式是
A.
B.
C.
D.
2.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要 秒.
A.110
B.100
C.90
D.85
3.甲、乙两车从相距450千米的、两地同时相向而行,经过3小时相遇,已知甲的速度是乙的1.5倍,则甲的速度是 千米时.
A.60
B.80
C.90
D.120
4.甲、乙两人步行的速度比是,如果甲、乙分别由、两地同时出发相向而行,0.5小时后相遇,如果他们同向而行,那么甲追上乙需要 小时.
A.4.5
B.5
C.5.5
D.6
5.有一艘渡轮在静水中的船速是35公里时,在流速2公里时的河流上顺流而下5小时,渡轮共行驶几公里?
A.155公里
B.165公里
C.175公里
D.185公里
6.甲、乙两人同时由地到相距60千米外的地,甲每小时比乙慢4千米.乙先走到地后立即返回,在距地12千米处与甲相遇,甲每小时行 千米.
A.10
B.8
C.12
D.16
7.甲乙二人速度比是,他们从一条“健身步道”的两点同时出发,如果同向而行,12分钟后乙追上甲;如果相向而行, 分钟后相遇.
A.1
B.3
C.5
D.8
8.如图长方形中,,位于点的第一只蚂蚁按方向爬行,位于点的第二只蚂蚁按的方向同时出发,分别沿长方形的边爬行,如果两只蚂蚁第一次在点相遇,则两只蚂蚁第二次相遇在 边上.
A.
B.
C.
D.
二、填空题(共12小题,每空2分,共28分)
1.梅花鹿小时跑千米,它1小时能跑
千米,跑1千米用
小时.
2.小明步行去离家10千米远的叔叔家,每小时走3千米,可他走40分钟要休息10分钟,他出发, 到叔叔家.
3.一环形跑道周长为240米,甲与乙同向,两人都从同一地点出发,每秒钟甲跑8米,乙跑5米,出发后,两人第一次相遇时,甲跑了
圈.
4.甲乙两地相距140千米,一辆汽车从甲地到乙地用2.5小时,返回时用1.5小时,这辆汽车往返的平均速度是
千米时.
5.快车和慢车同时从甲乙两地相对开出,快车每小时行44千米,相遇时已行了全程的,已知慢车行完全程需要8小时,则甲乙两地的路程为 千米.
6.一辆汽车以每小时80千米的速度从甲地开往乙,司机估算了一下,如果提速,则可以少用0.5小时到达乙地,甲、乙两地之间相距
千米.
7.在15千米的自行车越野赛中,小强以15千米时的速度骑完全程的,再以10千米时的速度骑完后段路程,则小强到达终点所用的时间为 小时.(保留一位小数)
8.早上妈妈步行出发上班,每分钟行70米.6分钟后爸爸发现妈妈忘了带手机,爸爸以每分钟210米的速度骑车去追妈妈.经过
分钟后爸爸能追上妈妈.
9.一只小船在静水中速度为每小时25千米,在210千米的河流中顺水而行时用了6小时,则返回原处需用
小时.
10.、两地相距470千米,乙车以每小时40千米的速度,甲车以每小时46千米的速度先后从两地出发,相向而行,相遇时甲车行驶了230千米,则乙车比甲车早出发 小时.
11.某列火车通过560米的一个隧道用了24秒钟,接着通过一个照明灯用了10秒钟,这列火车的速度是
米秒,火车长是
米.
12.如图,小红和小丽两个小朋友在一块正方形地上玩游戏.小红在点,小丽在点,她们同时出发,在距离点3.5米处的点相遇.已知小红和小丽的速度比是,这个正方形的周长是
米.
三、解决问题(共10小题,第21、22、23、24题每题5分,其余每题6分,共56分)
1.公园里的一条健身步道全长1500米,张明走完全程要用20分钟,李林走完全程要用30分钟.他们分别从这条健身步道的两端同时出发,相向而行,多长时间能够相遇?
2.假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.
(1)如果两人同时同地出发,相背而跑,多少分后相遇?
(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?
3.实验小学六年级学生去参观科技馆,400人排成两路纵队,相邻两排之间相距1米,队伍每分钟走60米,现在要过一座长41米的桥,从第一排上桥到最后一排离开桥,一共要多少分钟?
4.某人乘船由甲地顺流而下到乙地,然后又逆流而上到甲地,共乘船3小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,求两地的距离.
5.小巧以65米分的速度,步行从家里出发去少年宫.出发16分钟后,妈妈发现小巧把垃圾分类资料忘了,于是骑车以195米分的速度去追.已知小巧家与少年宫之间的路程是2100米.妈妈能在小巧到达少年宫之前追上她吗?
6.甲、乙两车分别从、两地同时出发,相向而行,相遇时甲车行了320千米,已知甲车的速度是每小时60千米,乙车的速度是甲车速度的,求、两地相距多少千米?
7.甲车的速度是100千米,是乙车速度的,两车同时分别从两地相向而行,在距中点180千米处相遇,问两车开出后多少小时相遇?
8.有甲乙两车从、两地相向而行,甲乙的速度比是,两车相遇后又继续前进,甲到达地,乙到达地后又返回,甲车在离地80千米的地方与乙车相遇,求、两地的距离.
9.上午8时,张、王两同学分别从、两地同时骑摩托车出发,相向而行.已知张每小时比王多行2千米,到上午10时,两人仍相距36千米的路程.相遇后,两人停车闲谈了15分钟,再同时按各自的方向以原来的速度继续前进,到中午12时15分,两人又相距36千米的路程.
(1)张、王二人的速度分别为多少?
(2)、两地间的路程有多少千米?
(3)两人第一次相遇在何时?
10.两只小爬虫甲和乙,从点同时出发,沿着长方形的边按照箭头方向爬行(如图所示).在距离点32厘米的点它们第一次相遇;在离点16厘米的点第二次相遇;在离点18厘米的点第三次相遇.长方形的边长多少厘米?
答案
一.选择题
1..2..3..4..5..6..7..8..
二、填空题
1.,.
2..
3.圈.
4.70.
5.264.
6.240.
7.1.3.
8.3.
9.14.
10.1.
11.40,400.
12.84.
三、解决问题
1.解:
(分钟)
答:相向而行,经过12分钟能够相遇.
2.解:(1)
(分钟)
答:如果两人同时同地出发,相背而跑,4.2分钟后相遇.
(2)
(分钟)
答:如果两人同时同地出发,同向而跑,52.5分钟后依依超出妈妈一整圈.
3.解:,
,
(分钟).
答:从排头两人上桥到排尾两人离开桥,共需要4分钟.
4.解:由题可知,
(千米小时)
(千米小时)
(小时)
(千米)
答:两地的距离是10千米.
5.解:
(分钟)
(米
答:妈妈能在小巧到达少年宫之前追上她.
6.解:
(千米)
答:、两地相距560千米.
7.解:
(千米)
小时)
答:两车开出后18小时相遇.
8.解:
(千米)
答:、两地的距离是256千米.
9.解:(1)12时15分时分小时
10时时小时
(千米小时)
(千米小时)
(千米小时)
答:张的速度是每小时19千米,王的速度是每小时17千米.
(2)
(千米)
答:两地相距108千米.
(3)
(小时)
(时
答:两人第一次相遇在上午11时.
10.解:由题意可知,
,
即,
又已知,
则,
可得:厘米.