2020-2021学年八年级数学苏科版下册《第11章反比例函数》常考热点专题提升训练(word版,附答案)

文档属性

名称 2020-2021学年八年级数学苏科版下册《第11章反比例函数》常考热点专题提升训练(word版,附答案)
格式 doc
文件大小 383.5KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-05-10 19:14:19

图片预览

文档简介

2021年苏科版八年级数学下册《第11章反比例函数》常考热点专题提升训练(附答案)
1.若点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是(  )
A.x1<x2<x3 B.x2<x3<x1 C.x1<x3<x2 D.x3<x1<x2
2.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=经过另一条直角边AC的中点D,S△AOC=3,则k=(  )
A.2 B.4 C.6 D.3
3.反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为(  )
A. B.
C. D.
4.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x的取值范围是(  )
A.x<﹣2或0<x<1 B.x<﹣2或x>1
C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>1
5.如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=(  )
A.1 B.2 C.3 D.4
6.若一次函数y=kx+b与反比例函数的图象都经过点(﹣2,1),则b的值是(  )
A.3 B.﹣3 C.5 D.﹣5
7.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为(  )
A.﹣2 B.﹣3 C.﹣6 D.﹣8
8.如图,在平面直角坐标系中,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC的面积是(  )
A. B.4 C.6 D.
9.如图,平行于y轴的直线分别交y=与y=的图象(部分)于点A、B,点C是y轴上的动点,则△ABC的面积为(  )
A.k1﹣k2 B.(k1﹣k2) C.k2﹣k1 D.(k2﹣k1)
10.如图,在平面直角坐标系中,函数y=(x>0)与y=x﹣1的图象交于点P(a,b),则代数式﹣的值为(  )
A.﹣ B. C.﹣ D.
11.如图,四边形OABC是平行四边形,其面积为8,点A在反比例函数y=的图象上,过点A作AD∥x轴交BC于点D,过点D的反比例函数图象关系式为y=,则k的值是   .
12.如图,A.B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为   .
13.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=(k≠0)的图象经过其中两点,则m的值为   .
14.如图,点A是反比例函数y=(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=   .
15.在平面直角坐标系xOy中,直线y=x与双曲线y=交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为   .
16.如图,矩形OABC的面积为,对角线OB与双曲线y=(k>0,x>0)相交于点D,且OB:OD=5:3,则k的值为   .
17.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为   .
18.点P,Q,R在反比例函数y=(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为   .
19.如图矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B和点D在反比例函数y=(x>0)的图象上,则矩形ABCD的面积为   .
20.如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
21.如图,已知一次函数y=﹣x+2与反比例函数y=的图象交于A,B两点,与x轴交于点M,且点A的横坐标是﹣2,B点的横坐标是4.
(1)求反比例函数的解析式;
(2)求△AOM的面积;
(3)根据图象直接写出反比例函数值大于一次函数值时x的取值范围.
22.如图,在平面直角坐标系中,四边形ABCD为正方形,点A的坐标为(0,3),点B的坐标为(0,﹣4),反比例﹣函数y=(k≠0)的图象经过点C.
(1)求反比例函数的解析式;
(2)点P是反比例函数在第二象限的图象上的一点,若△PBC的面积等于正方形ABCD的面积,求点P的坐标.
23.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.
(1)求一次函数y1的表达式与反比例函数y2的表达式;
(2)当y1<y2,时,直接写出自变量x的取值范围为   ;
(3)点P是x轴上一点,当S△PAC=S△AOB时,请直接写出点P的坐标为   .
24.如图,平面直角坐标系xOy中,?OABC的边OC在x轴上,对角线AC,OB交于点M,函数y=(x>0)的图象经过点A(3,4)和点M.
(1)求k的值和点M的坐标;
(2)求?OABC的周长.
25.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.
(1)求反比例函数的表达式;
(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,连接OB,求△ABO的面积.
26.如图,在平面直角坐标系xOy中,直线y=x+3与函数y=(x>0)的图象交于点A(1,m),与x轴交于点B.
(1)求m,k的值;
(2)过动点P(0,n)(n>0)作平行于x轴的直线,交函数y=(x>0)的图象于点C,交直线y=x+3于点D.
①当n=2时,求线段CD的长;
②若CD≥OB,结合函数的图象,直接写出n的取值范围.
参考答案
1.解:∵点A(x1,﹣5),B(x2,2),C(x3,5)都在反比例函数y=的图象上,
∴﹣5=,即x1=﹣2,
2=,即x2=5;
5=,即x3=2,
∵﹣2<2<5,
∴x1<x3<x2;故选:C.
2.解:∵直角边AC的中点是D,S△AOC=3,
∴S△CDO=S△AOC=,
∵反比例函数y=经过另一条直角边AC的中点D,CD⊥x轴,
∴k=2S△CDO=3,故选:D.
3.解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;
B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;
C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;
D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.
故选:B.
4.解:由一次函数和反比例函数的图象可知,当一次函数图象在反比例函数图象之上时,所对应的x的取值范围为﹣2<x<0或x>1,故选:D.
5.解:如图,作CD⊥x轴于D,设OB=a(a>0).
∵S△AOB=S△BOC,
∴AB=BC.
∵△AOB的面积为1,
∴OA?OB=1,
∴OA=,
∵CD∥OB,AB=BC,
∴OD=OA=,CD=2OB=2a,
∴C(,2a),
∵反比例函数y=(x>0)的图象经过点C,
∴k=×2a=4.
故选:D.
6.解:将点(﹣2,1)代入解析式,得k=﹣2;
再把点(﹣2,1)和k=﹣2代入一次函数,得
﹣2×(﹣2)+b=1,
解得b=﹣3.故选:B.
7.解:作DM⊥x轴于M,BN⊥x轴于N,如图,
∵点A的坐标为(﹣1,0),
∴OA=1,
∵AE=BE,BN∥y轴,
∴OA=ON=1,
∴AN=2,B的横坐标为1,
把x=1代入y=,得y=2,
∴B(1,2),
∴BN=2,
∵四边形ABCD为正方形,
∴AD=AB,∠DAB=90°,
∴∠MAD+∠BAN=90°,
而∠MAD+∠ADM=90°,
∴∠BAN=∠ADM,
在△ADM和△BAN中

∴△ADM≌△BAN(AAS),
∴DM=AN=2,AM=BN=2,
∴OM=OA+AM=1+2=3,
∴D(﹣3,2),
∵点D在反比例函数y=的图象上,
∴m=﹣3×2=﹣6,故选:C.
8.解:如图作BD⊥x轴于D,延长BA交y轴于E,
∵四边形OABC是平行四边形,
∴AB∥OC,OA=BC,
∴BE⊥y轴,
∴OE=BD,
∴Rt△AOE≌Rt△CBD(HL),
根据系数k的几何意义,S矩形BDOE=5,S△AOE=,
∴四边形OABC的面积=5﹣﹣=4,
故选:B.
9.解:由题意可知,AB=﹣,AB边上的高为x,
∴S△ABC=×(﹣)?x=(k1﹣k2),
故选:B.
10.解:法一:由题意得,
,解得,或(舍去),
∴点P(,),
即:a=,b=,
∴﹣=﹣=﹣;
法二:由题意得,
函数y=(x>0)与y=x﹣1的图象交于点P(a,b),
∴ab=4,b=a﹣1,
∴﹣==;
故选:C.
11.解:连接OD,
由题意可知,S△AOE=×3=,S△DOE=|k|,
∴S△AOD=,
∵S△AOD=S平行四边形ABCO==4,
∴=4,
解得|k|=5,
∵在第二象限,
∴k=﹣5.
故答案为﹣5.
12.解:过点B作BE⊥x轴于点E,
∵D为OB的中点,
∴CD是△OBE的中位线,即CD=BE.
设A(x,),则B(2x,),CD=,AD=﹣,
∵△ADO的面积为1,
∴AD?OC=1,(﹣)?x=1,解得k=,
故答案是:.
13.解:∵点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限,点A(﹣2,1)在第二象限,
∴点C(﹣6,m)一定在第三象限,
∵B(3,2)在第一象限,反比例函数y=(k≠0)的图象经过其中两点,
∴反比例函数y=(k≠0)的图象经过B(3,2),C(﹣6,m),
∴3×2=﹣6m,
∴m=﹣1,
故答案为:﹣1.
14.解:∵AB垂直于x轴,垂足为B,
∴△OAB的面积=|k|,
即|k|=6,
而k>0,
∴k=12,
∴反比例函数为y=,
∵点P(a,7)也在此函数的图象上,
∴7a=12,解得a=.
故答案为.
15.解:方法一、∵直线y=x与双曲线y=交于A,B两点,
∴联立方程组得:,
解得:,,
∴y1+y2=0,
方法二、∵直线y=x与双曲线y=交于A,B两点,
∴点A,点B关于原点对称,
∴y1+y2=0,
故答案为:0.
16.解:设D的坐标是(3m,3n),则B的坐标是(5m,5n).
∵矩形OABC的面积为,
∴5m?5n=,
∴mn=.
把D的坐标代入函数解析式得:3n=,
∴k=9mn=9×=12.
故答案为:12.
17.解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,
故点A、B的坐标分别为(﹣k,0)、(0,k),
则△OAB的面积=OA?OB=k2,而矩形ODCE的面积为k,
则k2=k,解得:k=0(舍去)或2,
故答案为2.
18.解:∵CD=DE=OE,
∴可以假设CD=DE=OE=a,
则P(,3a),Q(,2a),R(,a),
∴CP=,DQ=,ER=,
∴OG=AG,OF=2FG,OF=GA,
∴S1=S3=2S2,
∵S1+S3=27,
∴S3=,S1=,S2=,
解法二:∵CD=DE=OE,
∴S1=,S四边形OGQD=k,
∴S2=(k﹣×2)=,
S3=k﹣k﹣k=k,
∴k+k=27,
∴k=,
∴S2==.
故答案为.
19.解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),
∴设B、D两点的坐标分别为(1,y)、(x,2),
∵点B与点D在反比例函数的图象上,
∴y=6,x=3,
∴AB=4,AD=2,
∴矩形ABCD的面积为AB?AD=4×2=8.
故答案是:8.
20.解:(1)设反比例函数解析式为y=,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y=;
把A(3,m)代入y=,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得,
解得,
∴直线AB 的解析式为y=x﹣1;
(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;
(3)存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,
∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y=x,
可设直线C1C2的解析式为y=x+b',
把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',
解得b'=,
∴直线C1C2的解析式为y=x+,
解方程组,可得C2(,);
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,
设直线AC3的解析式为y=x+b“,
把A(3,2)代入,可得2=×3+b“,
解得b“=﹣,
∴直线AC3的解析式为y=x﹣,
解方程组,可得C3(﹣,﹣);
综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).
21.解:(1)∵点A的横坐标是﹣2,B点的横坐标是4,
∴当x=﹣2时,y=﹣(﹣2)+2=4,
当x=4时,y=﹣4+2=﹣2,
∴A(﹣2,4),B(4,﹣2),
∵反比例函数y=的图象经过A,B两点,
∴k=﹣2×4=﹣8,
∴反比例函数的解析式为y=﹣;
(2)一次函数y=﹣x+2中,令y=0,则x=2,
∴M(2,0),即MO=2,
∴△AOM的面积=×OM×|yA|=×2×4=4;
(3)∵A(﹣2,4),B(4,﹣2),
∴由图象可得,反比例函数值大于一次函数值时x的取值范围为:﹣2<x<0或x>4.
22.解:(1)∵点A的坐标为(0,3),点B的坐标为(0,﹣4),
∴AB=7,
∵四边形ABCD为正方形,
∴点C的坐标为(7,﹣4),
代入y=,得k=﹣28,)
∴反比例函数的解析式为y=﹣;
(2)设点P到BC的距离为h.
∵△PBC的面积等于正方形ABCD的面积,
∴×7×h=72,解得h=14,
∵点P在第二象限,yP=h﹣4=10,
此时,xP=﹣=﹣,)
∴点P的坐标为(﹣,10).
23.解:(1)将A(2,8),B(8,2)代入y=ax+b得,
解得,
∴一次函数为y=﹣x+10,
将A(2,8)代入y2=得8=,解得k=16,
∴反比例函数的解析式为y=;
(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,
故答案为x>8或0<x<2;
(3)由题意可知OA=OC,
∴S△APC=2S△AOP,
把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,
∴D(10,0),
∴S△AOB=S△AOD﹣S△BOD=﹣=30,
∵S△PAC=S△AOB=×30=24,
∴2S△AOP=24,
∴2××yA=24,即2×OP×8=24,
∴OP=3,
∴P(3,0)或P(﹣3,0),
故答案为P(3,0)或P(﹣3,0).
24.解:(1)∵点A(3,4)在y=上,
∴k=12,
∵四边形OABC是平行四边形,
∴AM=MC,
∴点M的纵坐标为2,
∵点M在y=的图象上,
∴M(6,2).
(2)∵AM=MC,A(3,4),M(6,2)
∴C(9,0),
∴OC=9,OA==5,
∴平行四边形OABC的周长为2×(5+9)=28.
25.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2,4),
将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,
故反比例函数表达式为:y=﹣②;
(2)联立①②并解得:x=﹣2或﹣8,
当x=﹣8时,y=x+5=1,故点B(﹣8,1),
设y=x+5交x轴于点C,
令y=0,则x+5=0,
∴x=﹣10,
∴C(﹣10,0),
过点A、B分别作x轴的垂线交x轴于点M、N,
则S△AOB=S△AOC﹣S△BOC=OC?AMOC?BN=.
26.解:(1)∵直线y=x+3经过点A(1,m),
∴m=1+3=4,
∵反比例函数的图象经过点A(1,4),
∴k=1×4=4;
(2)①当n=2时,点P的坐标为(0,2),
当y=2时,2=,解得x=2,
∴点C的坐标为(2,2),
当y=2时,x+3=2,解得x=﹣1,
∴点D的坐标为(﹣1,2),
∴CD=2﹣(﹣1)=3;
②当y=0时,x+3=0,解得x=﹣3,则B(﹣3,0)
当y=n时,n=,解得x=,
∴点C的坐标为(,n),
当y=n时,x+3=n,解得x=n﹣3,
∴点D的坐标为(n﹣3,n),
当点C在点D的右侧时,
若CD=OB,即﹣(n﹣3)=3,解得n1=2,n2=﹣2(舍去),
∴当0<n≤2时,CD≥OB;
当点C在点D的左侧时,
若CD=OB,即n﹣3﹣=3,解得n1=3+,n2=3﹣(舍去),
∴当n≥3+时,CD≥OB,
综上所述,n的取值范围为0<n≤2或n≥3+.