2021春人教版七年级数学下册第八章二元一次方程组教案(共5份)

文档属性

名称 2021春人教版七年级数学下册第八章二元一次方程组教案(共5份)
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-05-14 17:51:01

文档简介

第八章
二元一次方程组
8.1
二元一次方程组
【知识与技能】
1.
能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否二元一次方程、二元一次方程组的解.
2.
让学生学会用数学思想解决实际问题.
3.
体会实际问题中常会遇到的有关多个未知量间互相依赖、影响的问题,懂得二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受方程的作用.
【过程与方法】
经历由实际问题中抽象出二元一次方程组等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.
【情感态度与价值观】
进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.
二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解.
弄清二元一次方程组的解的概念,对于一个二元一次方程,只要给出其中任一个未知数的取值,就必定能找到适合这个方程的另一个未知数的值,进一步理解二元一次方程有无数个解,以及二元一次方程组(未知数的个数与独立等量关系个数相等)有唯一确定的解.
多媒体课件.
一、情境导入
小红到邮局寄挂号信,需要邮费3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种票额的邮票?
这个问题中有几个未知数,能列一元一次方程求解吗?如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?
二、合作探究
探究点一:二元一次方程及其解的定义
【类型一】
利用二元一次方程的定义求参数的值
已知|m-1|x|m|+y2n-1=3是二元一次方程,则m+n=________.
解析:根据二元一次方程满足的条件,即只含2个未知数,未知数的项的次数均为1的整式方程,即可求得m、n的值.根据题意得|m|=1且|m-1|≠0,2n-1=1,解得m=-1,n=1,所以m+n=0.故填0.
方法总结:二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数的项的最高次数均为一次;(3)方程是整式方程.
【类型二】
二元一次方程的解
已知是方程2x-ay=3的一个解,那么a的值是(  )
A.1
B.3
C.-3
D.-1
解析:将代入方程2x-ay=3,得2+a=3,所以a=1.故选A.
方法总结:根据方程的解的定义知,将x,y的值代入方程中,方程左右两边相等,即可求解.
探究点二:二元一次方程组及其解的定义
【类型一】
识别二元一次方程组
有下列方程组:①②③④⑤其中二元一次方程组有(  )
A.1个
B.2个
C.3个
D.4个
解析:①方程组中第一个方程含未知数的项xy的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.
方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.
【类型二】
利用二元一次方程组的解求参数的值
甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2014+(-b)2015的值.
解析:由方程组解的定义知:甲看错了方程①中的a得到方程组的解为说明是方程②的解;同样是方程①的解.
解:把代入②,得-12+b=-2,所以b=10.把代入①,得5a+20=15,所以a=-1.所以a2014+(-b)2015=(-1)2014+(-×10)2015=1-1=0.
方法总结:利用方程组的解确定字母参数的方法是将方程组的解代入它适合的方程中,得到关于字母参数的新方程,从而求解.
探究点三:列二元一次方程组
小刘同学用10元钱购买了两种不同的贺卡共8张,单价分别是1元与2元.设他购买了1元的贺卡x张,2元的贺卡y张,那么可列方程组(  )
A.
B.
C.
D.
解析:根据题意可得到两个相等关系:(1)1元贺卡张数+2元贺卡张数=8(张);(2)1元贺卡钱数+2元贺卡钱数=10(元).设他购买了1元的贺卡x张,2元的贺卡y张,可列方程组为故选D.
方法总结:要判断哪个方程组符合题意,可从题目中找出两个相等关系,然后代入未知数,即可得到方程组,进而得到正确答案.
1.知识回顾.
2.谈谈这节课你有哪些收获?
【教学说明】教师应与学生一起进行交流,共同回顾本节知识,理清解题思路与方法,对普遍存在的疑虑,可共同探讨解决,对少数同学还面临的问题,可让学生与同伴交流获得结果,也可课后个别辅导,帮助他分析,找出问题原因,及时查漏补缺.
二元一次方程组
通过自主探究和合作交流,建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,增加对数学较全面的体验和理解第八章
二元一次方程组
8.2
消元-解二元一次方程组
课时1
代入消元法
【知识与技能】
1、使学生学会用代人消元法解二元一次方程组;
2、理解代人消元法的基本思想体现的化未知为已知的化归思想方法;
3、逐步渗透矛盾转化的唯物主义思想.
【过程与方法】
经历由实际问题中抽象出二元一次方程组等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.
【情感态度与价值观】
进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.
代入消元法的基本思想.
代入消元法的基本思想.
多媒体课件.
一、情境导入
《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?
我们可以设树上有x只鸽子,地上有y只鸽子,得到方程组可是这个方程组怎么解呢?有几种解法?
二、合作探究
探究点:用代入法解二元一次方程组
【类型一】
用代入法解二元一次方程组
用代入法解下列方程组:
(1)
(2)
解析:对于方程组(1),比较两个方程系数的特点可知应将方程②变形为x=1-5y,然后代入①求解;对于方程组(2),应将方程组变形为观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x=.
解:(1)由②,得x=1-5y.③
把③代入①,得2(1-5y)+3y=-19,
2-10y+3y=-19,-7y=-21,y=3.
把y=3代入③,得x=-14.
所以原方程组的解是
(2)将原方程组整理,得
由③,得x=.⑤
把⑤代入④,得2(3y+1)-3y=-5,
3y=-7,y=-.
把y=-代入⑤,得x=-3.
所以原方程组的解是
方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.
【类型二】
整体代入法解二元一次方程组
解方程组:
解析:把(x+1)看作一个整体代入求解.
解:由①,得x+1=6y.把x+1=6y代入②,得2×6y-y=11.解得y=1.把y=1代入①,得=2×1,x=5.所以原方程组的解为
方法总结:当所给的方程组比较复杂时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.
【类型三】
已知方程组的解,用代入法求待定系数的值
已知是二元一次方程组的解,则a-b的值为(  )
A.1
B.-1
C.2
D.3
解析:把解代入原方程组得解得所以a-b=-1.故选B.
方法总结:解这类题就是根据方程组解的定义求,将解代入方程组,得到关于字母系数的方程组,解方程组即可.
解二元一,次方程组)
回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力第八章
二元一次方程组
8.2
消元-解二元一次方程组
课时2
加减消元法
【知识与技能】
1、掌握用加减法解二元一次方程组;
2、使学生理解加减消元法所体现的“化未知为已知”的化归思想方法;
3、体验数学学习的乐趣,在探索过程中品尝成功的喜悦,树立学好数学的信心.
【过程与方法】
经历由实际问题中抽象出二元一次方程组等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.
【情感态度与价值观】
进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.
加减消元法的基本思想.
会用加减法解二元一次方程组.(重点)                   
多媒体课件.
一、情境导入
上节课我们学习了用代入消元法解二元一次方程组,那么如何解方程组呢?
1.用代入法解(消x)方程组.
2.解完后思考:
用“整体代换”的思想把2x作为一个整体代入消元求解.
3.还有没有更简单的解法?
由x的系数相等,是否可以考虑①-②,从而消去x求解?
4.思考:
(1)两方程相减的依据是什么?
(2)目的是什么?
(3)相减时要特别注意什么?
二、合作探究
探究点一:用加减消元法解二元一次方程组
用加减消元法解下列方程组:
(1)
(2)
解析:(1)观察x,y的两组系数,x的系数的最小公倍数是12,y的系数的最小公倍数是6,所以选择消去y,把方程①的两边同乘以2,得8x+6y=6③,把方程②的两边同乘以3,得9x-6y=45④,把③与④相加就可以消去y;(2)先化简方程组,得观察其系数,方程④中x的系数恰好是方程③中x的系数的2倍,所以应选择消去x,把方程③两边都乘以2,得4x+6y=28⑤,再把方程⑤与方程④相减,就可以消去x.
解:(1)①×2,得8x+6y=6.③
②×3,得9x-6y=45.④
③+④,得17x=51,x=3.
把x=3代入①,得4×3+3y=3,y=-3.
所以原方程组的解是
(2)先化简方程组,得
③×2,得4x+6y=28.⑤
⑤-④,得11y=22,y=2.
把y=2代入④,得4x-5×2=6,x=4.
所以原方程组的解是
方法总结:用加减消元法解二元一次方程组时,决定消去哪个未知数很重要,一般选择消去两个方程中系数的最小公倍数的绝对值较小的未知数.复杂的方程组一定要先化简,再观察思考消元方案.
探究点二:用加减法整体代入求值
已知x、y满足方程组求代数式x-y的值.
解析:观察两个方程的系数,可知两方程相减得2x-2y=-6,从而求出x-y的值.
解:②-①,得2x-2y=-1-5,③
,得x-y=-3.
方法总结:解题的关键是观察两个方程相同未知数的系数关系,利用加减消元法求解.
探究点三:构造二元一次方程组求值
已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.
解析:根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.
解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以
整理,得
④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项.
方法总结:解这类题,就是根据同类项的定义,利用相同字母的指数分别相等,列方程组求字母的值.
用加减法解二元一次方程组的步骤:
①变形,使某个未知数的系数绝对值相等;
②加减消元;
③解一元一次方程;
④求另一个未知数的值,得方程组的解.
进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.选择恰当的方法解二元一次方程组,培养学生的观察、分析问题的能力第八章
二元一次方程组
8.3
实际问题与二元一次方程组
【知识与技能】
1.经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型。
2.在运用二元一次方程组解决实际问题过程中进一步体会数学建模思想,培养学生的数学应用意识。
3.培养学生的思维能力、运算能力、分析问题和解决问题的能力,增强列方程组解决现实问题的应用数学意识。
【过程与方法】
经历由实际问题中抽象出二元一次方程组等有关概念的过程,让学生体会到方程是刻画现实世界中数量关系的一个有效数学模型.
【情感态度与价值观】
进一步培养学生的观察、类比、归纳能力,体验数学的严密性和深刻性.
1.让学生经历和体验用二元一次方程组解决实际问题的过程。
2.
进一步体会方程(组)是刻画现实世界的有效数学模型。
3.
确立等量关系,列出正确的二元一次方程组。
1.让学生经历和体验用二元一次方程组解决实际问题的过程。
2.
进一步体会方程(组)是刻画现实世界的有效数学模型。
3.
确立等量关系,列出正确的二元一次方程组。
多媒体课件.
一、情境导入
古算题:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问有几客几房中?”题目大意:一些客人到李三公的店中住宿,若每间房住7人,就会有7人没地方住;若每间房住9人,就会空一间房.问有多少间房?多少客人?你能解答这个问题吗?
二、合作探究
探究点一:利用二元一次方程组解决实际问题
【类型一】
和差倍分问题
某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两种货物应各装多少吨?
解析:已知量:(1)甲种货物每吨体积为6立方米;(2)乙种货物每吨体积为2立方米;(3)船的载重量为300吨;(4)船的容积为1200立方米.
未知量:甲、乙两种货物应装的质量各为多少吨.若以x、y表示它们的吨数,则甲种货物的体积为6x立方米,乙种货物的体积为2y立方米.
相等关系:“充分利用这艘船的载重量和容积”的意思是“货物的总质量等于船的载重量”且“货物的体积等于船的容积”.即
甲种货物质量,↓,x))+,)乙种货物质量,↓,y))=,)船的总载重量,↓,300))
甲种货物体积,↓,6x))+,)乙种货物体积,↓,2y))=,)船的总容积,↓,1200))
解:设甲种货物装x吨,乙种货物装y吨.由题意,得解得
答:甲、乙两种货物各装150吨.
方法总结:列方程组解应用题一般都要经历“审、设、找、列、解、答”这六个步骤,其关键在于审清题意,找相等关系.设未知数时,一般是求什么,设什么,并且所列方程的个数与未知数的个数相等.
【类型二】
变化率问题
为了解决民工子女入学难的问题,我市建立了一套进城民工子女就学的保障机制,其中一项就是免交“借读费”.据统计,去年秋季有5000名民工子女进入主城区中小学学习,预测今年秋季进入主城区中小学学习的民工子女将比去年有所增加,其中小学增加20%,中学增加30%,这样今年秋季将新增1160名民工子女在主城区中小学学习.
(1)如果按小学每年收“借读费”500元、中学每年收“借读费”1000元计算,求今年秋季新增的1160名中小学生共免收多少“借读费”;
(2)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,按今年秋季入学后,民工子女在主城区中小学就读的学生人数计算,一共需配备多少名中小学教师?
解析:解决此题的关键是求出今年秋季入学的学生中,小学和初中各有民工子女多少人.欲求解这个问题,先要求出去年秋季入学的学生中,小学和初中各有民工子女多少人.
解:(1)设去年秋季在主城区小学学习的民工子女有x人,在主城区中学学习的民工子女有y人.则解得20%x=680,30%y=480,500×680+1000×480=820000(元)=82(万元).
答:今年秋季新增的1160名中小学生共免收82万元“借读费”;
(2)今年秋季入学后,在小学就读的民工子女有3400×(1+20%)=4080(人),在中学就读的民工子女有1600×(1+30%)=2080(人),需要配备的中小学教师(4080÷40)×2+(2080÷40)×3=360(名).
答:一共需配备360名中小学教师.
方法总结:在解决增长相关的问题中,应注意原来的量与增加后的量之间的换算关系:增长率=(增长后的量-原量)÷原量.
【类型三】
行程问题
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.
解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下:
路程
速度
时间
顺流
140km
(x+y)km/h
7h
逆流
140km
(x-y)km/h
10h
  解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得解得
答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.
方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.
探究点二:利用二元一次方程组解决几何问题
小敏做拼图游戏时发现:8个一样大小的小长方形恰好可以拼成一个大的长方形,如图①所示.小颖看见了,也来试一试,结果拼成了如图②所示的正方形,不过中间留下一个边长恰好为2cm的小正方形空白,你能算出每个小长方形的长和宽各是多少吗?
解析:在图①中大长方形的长有两种表现形式,一种是5个小长方形的宽的和,另一种是3个小长方形的长的和;在图②中,大正方形的边长也有两种表现形式,一种是1个小长方形的长和2个小长方形的宽的和,另一种从中间看为2个小长方形的长与小正方形的边长的和,由此可设未知数列出方程组求解.
解:设小长方形的长为xcm,宽为ycm.由题意,得解得
答:每个小长方形的长为10cm,宽为6cm.
方法总结:本题考查了同学们的观察能力,通过观察图形找等量关系,建立方程组求解,渗透了数形结合的思想.
列方程组,解决问题)
通过“古算题”,把同学们带入实际生活中的数学问题情景,学生体会到数学中的“趣”.进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神,使学生形成积极参与数学活动、主动与他人合作交流的意识第八章
二元一次方程组
8.4
三元一次方程组的解法
【知识与技能】
使学生了解三元一次方程组的概念,会用消元法解简单的三元一次方程组。
【过程与方法】
通过三元一次方程组的解法练习,培养学生的分析能力,能根据题目的特点确定消元方程,训练解题技巧.
【情感态度与价值观】
让学生通过自己的探索、尝试、比较等活动去发现一些数学规律,体会一些数学思想,从而激发学生的求知欲望和学习兴趣
解简单的三元一次方程组。
熟练解三元一次方程组,针对方程组的特点,选择最好的解法。。
多媒体课件.
一、情境导入
《九章算术》分为9章,并因此而得名.其中第8章为“方程”,里面有这样一道题目(用现代汉语表述):3束上等的稻,2束中等的稻,1束下等的稻,共出谷39斗;2束上等的稻,3束中等的稻,1束下等的稻,共出谷34斗;1束上等的稻,2束中等的稻,3束下等的稻,共出谷26斗.
问:上、中、下三种稻,每束的出谷量各是多少斗?
二、合作探究
探究点一:三元一次方程组的概念
下列方程组中,是三元一次方程组的是(  )
A.
B.
C.
D.
解析:A选项中,方程x2-y=1与xz=2中含未知数的项的次数为2,不符合三元一次方程组的定义,故A选项不是;B选项中,,不是整式,故B选项不是;C选项中方程组含有四个未知数,故C选项不是;D选项符合三元一次方程组的定义.故答案为D.
方法总结:满足三元一次方程组的条件:(1)方程组中一共含有三个未知数;(2)每个方程中含未知数的次数都是1;(3)方程组中共有三个整式方程.
探究点二:三元一次方程组的解法
解下列三元一次方程组:
(1)
(2)
解析:(1)观察各个方程的特点,可以考虑用代入法求解,将①分别代入②和③中,消去z可得到关于x、y的二元一次方程组;(2)观察各个方程的特点,可以考虑用加减法求解,用①减去②可消去z,用①加上③也可消去z,进而得到关于x、y的二元一次方程组.
解:(1)将①代入②、③,消去z,得解得把x=2,y=3代入①,得z=5.所以原方程组的解为
(2)①-②,得x+2y=11.④
①+③,得5x+2y=9.⑤
④与⑤组成方程组
解得
把x=-,y=代入②,得z=-.
所以原方程组的解是
方法总结:解三元一次方程组的难点在于根据方程组中方程的系数特点选择较简便的方法.(1)一般地,若某一方程的系数比较简单,可选用代入法;(2)若方程组三个方程中某个未知数的系数的绝对值相等或成倍数时,可选用加减消元法,但要注意必须消去同一个未知数,否则所得的两个新方程虽然都含两个未知数,但由它们组成的方程组仍含三个未知数,并未达到消元的目的.
探究点三:三元一次方程组的应用
【类型一】
三元一次方程组在非负数中的应用
若|a-b-1|+(b-2a+c)2+|2c-b|=0,求a,b,c的值.
解析:本题考查非负数性质的综合应用,要使等式成立必须使每个非负数都为0.
解:因为三个非负数的和等于0,所以每个非负数都为0.
可得方程组解得
方法总结:非负数之和为0,隐含着每个非负数都为0,从而可列方程组求解.
【类型二】
利用三元一次方程组求数字问题
一个三位数,十位上的数字是个位上的数字的,百位上的数字与十位上的数字之和比个位上的数字大1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.
解析:设原三位数百位、十位、个位上的数字分别为x,y,z,则原三位数可表示为100x+10y+z.
解:设原三位数百位、十位、个位上的数字分别为x、y、z.由题意,得
解得
答:原三位数是368.
方法总结:解数字问题的关键是正确地用代数式表示数.如果一个两位数的十位上的数字为a,个位上的数字为b,那么这个两位数可表示为10a+b.如果一个三位数的百位上的数字为a,十位上的数字为b,个位上的数字为c,那么这个三位数可表示为100a+10b+c,依此类推.
【类型三】
列三元一次方程组解决实际问题
某汽车在相距70km的甲、乙两地往返行驶,因途中有一坡度均匀的小山.该汽车从甲地到乙地需要2.5h,而从乙地到甲地需要2.3h.假设汽车在平路、上坡路、下坡路的时速分别是30km、20km、40km,则从甲地到乙地的过程中,上坡路、平路、下坡路的长度各是多少?
解析:题中有三个等量关系:①上坡路长度+平路长度+下坡路长度=70km;②从甲地到乙地的过程中,上坡时间+平路时间+下坡时间=2.5h;③从乙地到甲地的过程中,上坡时间+平路时间+下坡时间=2.3h.
解:设从甲地到乙地的过程中,上坡路、平路、下坡路的长度分别是xkm,ykm和zkm.
由题意,得解得
答:从甲地到乙地的过程中,上坡路是12km,平路是54km,下坡路是4km.
方法总结:解此题的关键是理解汽车在往返行驶的过程中,如果从甲地到乙地是上坡路段,那么从乙地到甲地时就变成了下坡路段.
三元一次方程组
通过对二元一次方程组的类比学习,让学生感受把新知转化为已知,把不会的问题转化为学过的问题,把难度大的问题转化为难度较小的问题这一化归思想.感受数学知识之间的密切联系,增强学生的数学应用意识,初步培养学生建立数学模型解决问题的良好思维习惯