北师大版九年级数学下册:3.2 圆的对称性 教学设计

文档属性

名称 北师大版九年级数学下册:3.2 圆的对称性 教学设计
格式 doc
文件大小 164.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-05-14 15:00:45

图片预览

文档简介

第三章 圆
《圆的对称性》教学设计说明
教学内容分析
1、圆的对称性 (1) 圆是轴对称图形,对称轴有无数条(所有经过圆心的直线都是对称轴);(2) 圆是中心对称图形.对称中心为圆心
2、 圆的有关性质(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
二、教学任务分析
知识与技能
通过探索理解并掌握:(1)圆的旋转不变性;(2)圆心角、弧、弦之间相等关系定理.
教学重点:探索圆心角、弧、弦之间关系定理并利用其解决相关问题.
教学难点:圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的理解及定理的证明.
三、教学设计分析
本节课设计的教学环节:认识圆的对称性(轴对称图形,中心对称图形)、认识圆心角的概念、探索圆心角,弦,弧的关系、合作学习、练习提高。
数学活动一:认识圆的对称性
提问一:我们已经学习过圆,你能说出圆的那些特征?
提问二:圆是对称图形吗?
(1)圆是轴对称图形吗?你怎么验证
圆是轴对称图形,对称轴有无数条(所有经过圆心的直线都是对称轴)
验证方法:折叠
(2)圆是中心对称图形吗?你怎么验证?
同学们请观察老师手中的两个圆有什么特点?
现在老师把这两个圆叠在一起,使它俩重合,将圆心固定. 将上面这个圆旋转任意一个角度,两个圆还重合吗?
通过旋转的方法我们知道:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形.对称中心为圆心.
数学活动二:了解圆心角的定义
如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.
数学活动三、探索圆心角定理
尝试与交流.按下面的步骤做一做:
1.在两张透明纸上,作两个半径相等的⊙O和⊙O′,沿圆周分别将两圆剪下.
2.在⊙O和⊙O′上分别作相等的圆心角∠AOB和∠A′O′B′ (如下图示),圆心固定.注意:∠AOB和∠A′O′B′时,要使OB相对于0A的方向与O′B′相对于O′A′的方向一致,否则当OA与O′A′重合时,OB与O′B′不能重合.
3.将其中的一个圆旋转一个角度,使得OA与O′A′重合.
教师叙述步骤,同学们一起动手操作.


通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由.
结论可能有:
1.由已知条件可知∠AOB=∠A′O′B′.
2.由两圆的半径相等,可以得到∠OBA=∠O′B′A′=∠OAB和∠O′A′B′.
3.由△AOB≌△A′O′B′可得到AB=A′B′.
4.由旋转法可知=
刚才到的=理由是一种新的证明弧相等的方法——叠合法.我们在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA与O′A′重合时,由于∠AOB=∠A′O′B′.这样便得到半径OB与O′B′重合.因为点A和点A′重合,点B和点B′重合,所以AB和A′B′重合,弦AB与弦A′B′重合,即AB=A′B′.
在上述操作过程中,你会得出什么结论?
在等圆中,相等的圆心角所对的弧相等,所对的弦相等.
上面的结论,在同圆中也成立.于是得到下面的定理:
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
这就是我们通过实验利用圆的旋转不变性探索到的圆的另一个特性:圆心角、弧、弦之间相等关系定理.
注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.
(通过举反例强化对定理的理解)请同学们画一个只能是圆心角相等的这个条件的图.
如下图示.虽然∠AOB=∠A′O′B′,但AB≠A′B′≠,
下面我们共同想一想.
在同圆或等圆中 弧相等
相等的圆心角 弦相等
如果在同圆或等圆这个前提下,将题设和结论中任何一项交换一下,结论正确吗?你是怎么想的?请你说一说.
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
注意:
(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦不一定相等.
(2)此定理中的“弧”一般指劣弧.
(3)要结合图形深刻体会圆心角、弧、弦这四个概念和“所对”一词的含义.否则易错用此关系.
(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.如“在同圆中,等弧所对的圆心角相等”等等.
例题: 如图,AB,DE是⊙O的直径,C是⊙O的一点,且,BE与CE的大小有什么关系?为什么?
(过程见课本)
(补充例题)
例.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.
(1)如果∠AOB=∠COD,那么OE与OF的大小有什么关系?为什么?
(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?为什么?∠AOB与∠COD呢?
分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.
(2)∵OE=OF,∴在Rt△AOE和Rt△COF中,
又有AO=CO是半径,∴Rt△AOE≌Rt△COF,
∴AE=CF,∴AB=CD,又可运用上面的定理得到 =
解:(1)如果∠AOB=∠COD,那么OE=OF
理由是:∵∠AOB=∠COD
∴AB=CD ∵OE⊥AB,OF⊥CD ∴AE=,CF= ∴AE=CF
又∵OA=OC ∴Rt△OAE≌Rt△OCF∴OE=OF
(2)如果OE=OF,那么AB=CD,=,∠AOB=∠COD
理由是: ∵OA=OC,OE=OF ∴Rt△OAE≌Rt△OCF ∴AE=CF
又∵OE⊥AB,OF⊥CD ∴AE=,CF= ∴AB=2AE,CD=2CF
∴AB=CD ∴=,∠AOB=∠COD
1