垂径定理

文档属性

名称 垂径定理
格式 zip
文件大小 229.5KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-03-20 22:55:07

图片预览

文档简介

(共11张PPT)
实践探究
 把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?
可以发现:
圆是轴对称图形,任何一条直径所在直线都是它的对称轴. 
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.
(1)这个图形是轴对称图形吗?如果是,它的对称轴是什么?
(2)你能发现图中有那些相等的线段和弧?为什么?
·
O
A
B
C
D
E
活 动 二
(1)是轴对称图形.直径CD所在的直线是它的对称轴
(2) 线段: AE=BE


弧:AC=BC ,AD=BD


把圆沿着直径CD折叠时,CD两侧的两个半圆重合, 
点A与点B重合,AE与BE重合,AC 和 BC 
重合,AD和 BD重合.




直径CD平分弦AB,并且
平分AB 及 ACB


·
O
A
B
C
D
E
垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
即AE=BE 
AD=BD,AC=BC




③AM=BM,
由 ① CD是直径
② CD⊥AB
可推得


⑤AD=BD.


④AC=BC,
②CD⊥AB,
由 ① CD是直径
③ AM=BM


④AC=BC,


⑤AD=BD.
可推得






垂径定理:
推论:
判断下列说法的正误
①平分弧的直径必平分弧所对的弦
 ②平分弦的直线必垂直弦
③垂直于弦的直径平分这条弦
④平分弦的直径垂直于这条弦
⑤弦的垂直平分线是圆的直径
⑥平分弦所对的一条弧的直径必垂直这条弦
⑦在圆中,如果一条直线经过圆心且平分弦, 
 必平分此弦所对的弧
1.如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,求⊙O的半径.
·
O
A
B
E
练习
解:
答:⊙O的半径为5cm.
活 动 三
在Rt △ AOE 中
2.如图,在⊙O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB于D,OE⊥AC于E,求证四边形ADOE是正方形.
D
·
O
A
B
C
E
证明:
∴四边形ADOE为矩形,
又 ∵AC=AB
∴ AE=AD
∴ 四边形ADOE为正方形.
例2:已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。
求证:AC=BD。
证明:过O作OE⊥AB,垂足为E,
则AE=BE,CE=DE。
AE-CE=BE-DE。
所以,AC=BD
E
.
A
C
D
B
O
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的货船要经过拱桥,此货船能否顺利通过这座拱桥?
C
N
M
A
E
H
F
B
D
O
结束寄语
不学自知,不问自晓,古今行事,未之有也.
下课了!