(共39张PPT)
作品简介
本节课是一节探索活动课,在学生掌握计算器的使用方法后,利用计算器来探索某些算式中所蕴涵的规律,使学生体会探索数学规律的方法,发现数学的神奇与美妙。课前准备导学稿,由数学家高斯10岁时一道数学难题引入,开启高斯宝盒的闯关活动,教学时可以充分利用学生已有的经验,放手让学生进行三次合作交流,比较算式及其结果的特点,从中发现一些数学规律,在体会探索的方法的同时掌握用有规律的题组解决繁杂的计算的方法,感受到数学的美,奇,妙,为今后探索更加富有挑战性的规律作好铺垫。
你有发现什么吗?
1+
2+
3+
4+5
+
……
+98
+99
+100=?
聪明的高斯,发现了其中的奥妙,直接用101
×50=5050算出了得数。
仔细观察
如何巧算
观看视频著名德国数学家《高斯故事》
有趣的算式
北师大版
四年级上册
第三单元
乘法
大庆市萨中第一小学
蔡宛序
同学们你想像高斯一样聪明吗?
高斯宝盒
温馨提示:
1.开启宝盒需要密码。
2.寻找密码需要闯关。
你有勇气闯关吗?
你准备好了没?
请带上计算器,一起高斯大闯关去!探索算式的规律。
Let’s
go!
第一关:奇妙的宝塔
第二关:奇怪的142857
第三关:神奇的9
第四关:寻找神秘的数
高斯大闯关
第一关:奇妙的宝塔
1×1
=(
)
11
×11
=(
)
111
×111
=(
)
1111
×1111
=
?
11111
×11111=
?
1
121
12321
你还能写出几个这样的算式吗?
你能直接写出问号中的得数吗?
小组讨论(同桌一组):
1.仔细观察这三道算式的答案,你有什么发现?(看清)
2.你能接着写下去吗?
3.用计算器验证你的想法。
小组合作
探索规律
第一关:奇妙的宝塔
1×1
=(
)
11
×11
=(
)
111
×111
=(
)
1111
×1111
=
?
11111
×11111=
?
111111
×111111
=12345654321
1111111
×1111111
=1234567654321
…
…
1
121
12321
1234321
12345321
1×1=
11×11=
111×111=
1111×1111=
?
?
121
12321
1234321
123454321
1
5个1
5个1
回文数
第一关:奇妙的宝塔
11111×11111=
回文年
所谓回文年,指的是该年份顺读与倒读完全一样。
如1881年,1991年,2002年,2112年都是回文年。
回文句
“回文句”是一种句型.一个句子如果正着读与倒着读的意思一样,就可以称为"回文句".
如:
蜜蜂酿蜂蜜
风扇能扇风
奶牛产牛奶
清水池里池水清
人过大佛寺
寺佛大过人
院满春光春满院,门盈喜气喜盈门
回文联
第二关:奇怪的142857
142857
142857×1=
1
4
2
8
5
7
142857
1
4
2
8
5
7
1
4
2
8
5
7
142857×1=
7
1
7
285714
1
4
2
8
5
7
1
4
2
8
5
7
142857×2=
7
2
142857×1=
142857×2=
142857×3=
142857×4=
142857×5=
142857×6=
142857
285714
428571
571428
714285
857142
神奇的142857
它发现于埃及金字塔内,
它是一组神奇数字,
它证明一星期有7天,
它自我累加一次,就由它的6个数字,依顺序轮值一次。
走马灯数
请你自己来算一算
返回
142857x7=?
999999
999999
发现:
142857这个数字乘上7,
142857x7=
999999
,你是否很惊讶?
再把142857这个数字分解成两组数字,142,857
这两个数字之和得出142+857=999
再把142857分解成三组数字,14,28,57
这三组数字之和得出,14+28+57=99
999999
999
99
142857×7=
1+4+2+8+5+7=
14+28+57=
142+857=
999999
27
2+7=9
99
999
它还有更神奇的地方等待你去发掘!
也许,它就是宇宙的密码,
如果您发现了它的真正神奇秘密┅┅
请与大家分享!
142857
第三关:神奇的9
算一算99
×99,999
×999,
9999
×9999的得数
99
×99
=9801
999
×999
=998001
9999
×9999
=99980001
你可以继续写
下去吗?
小组合作
化繁为简
小组讨论(4人一组):
1.先用计算器继续算下去,你发现什么?
2.如果无法用普通计算器算下去,和你的小伙伴一起想想怎么样写下去?(想清)
99×99=
999×999=
9999×9999=
99999×99999=
999999×999999=
9801
998001
99980001
9999800001
999998000001
第三关:神奇的9
第四关:寻找密码,开启高斯宝盒
在0~9的十个数字中,任意选择四个你喜欢的数,组成
最大和最小的数。然后两数相减,再把差的四个数字重组成
一个最大和最小的数,再次相减……例如选1、3、7、8
两数
相减
8731(最大)
-1378(最小)
7353
得数重组
(最大)
7533
(最小)
-
3357
4176
在这样不断重复的过程
中,你会找到一个神秘
的数吗?
……
小组探索
寻找密码
小组探索:
1.以组为单位,每组0~9任意选四个数字。
2.四个组同时进行,以组为单位寻找密码,加油!
3.四个数字,任意组合组成最大和最小的数,然后两数相减,并把结果的四个数字重新组成一个最大的数与最小的数,再次相减……
数字黑洞
——6174
希望同学们做一个不怕困难、善于观察探索、爱动脑筋的小小数学家!
密码就是:6174
恭喜你们,连闯四关,终于赢了!
你们是小数学家高斯
打开高斯宝箱
高斯宝盒
礼盒(一)
9999×1=
9999×2=
9999×3=
9999×4=
9999×5=
9999×6=
9999×7=
9999×8=
9999×9=
用计算器计算下列各题。
不用计算器,直接写出下列各题的答案吗?
9999
19998
29997
39996
49995
59994
69993
79992
89991
礼盒(二)
1×9+2=
12×9+3=
123×9+4=
1234×9+5=
12345×9+
=
11
111
1111
123456×
+
=1111111
11111
6
111111
9
7
礼盒(三)
9÷9=
108÷9=
1107÷9=
11106÷9=
111105÷9=
1111104÷9=
11111103÷9=
111111102÷9=
1111111101÷9=
先用计算器计算下列各题
不计算,试写出下面各题的结果,再用计算器检验对不对?
1
12
123
1234
12345
123456
1234567
12345678
123456789
一问一答
谈收获
作业
1.收集或自编一些有规律的有趣算式。
2.阅读有关数学家小时候的智慧小故事。(共16张PPT)
有趣的算式
第四关
第一关
第二关
第三关
第一关
奇妙的宝塔
解题金钥匙
1×1=
11×11=
111×111=
1
121
12321
每一个乘数中数字1的个数有几个,积的排列顺序就从1排到几再倒回到1.
×
=
12345678987654321
真棒,第一关通过了!
111111111
111111111
继续挑战吧!
第二关
神奇的“9”
9×9=
99×99=
999×999=
9999×9999=
用计算器算一算:
81
9801
998001
99980001
它们的结果都是以9开头1结尾,中间是8和0,9和0的个数相等,都是算式中一个乘数里9的个数减1得来的。
不用计算,直接写出下面算式的结果.
999999×999999=
9999999×9999999=
99999999×99999999=
999998000001
99999980000001
9999999800000001
好棒啊,你们已通过第二关了!
第三关
奇妙的11、111、…
观察下面的算式和得数分别有什么特点,你能再写出几个这样的算式吗?用计算器验证结果.
1×9+2=
12×9+3=
123×9+4=
1234×9+5=
12345×9+
□
=
123456×□+□=
11
111
1111
11111
6
111111
9
7
1111111
1234567×9+8=
11111111
12345678×9+9=
111111111
真厉害,闯过第三关了!
第四关
奇怪的142857
142857分别乘1、2、3、4,你发现了什么?
142857×1=
142857×2=
142857×3=
142857×4=
285714
428571
571428
142857×5=
142857×6=
你能根据积的特点,直接写出142857乘5,乘6的得数吗?
714285
857142
好厉害,闯过第四关了!
142857
算一算:
142857×7=
999999
恭喜你们,连闯四关,终于赢了!!!
在0~9的十个数字中,任意选择四个数字,组成最大的数和最小的数.然后两数相减,并把结果的四个数字重新组成一个最大的数和最小的数,再次相减……
如选1、3、7、8
两数
相减
8731
1378
7353
得数重组
7533
-3357
4176
……
在这样不断重复的过程中,你会找到一个神秘的数
寻找神秘的四位数:
(最大)
(最小)
(最大)
(最小)
6174
-
练一练:
你有什么收获?
再见!(共16张PPT)
观察可能导致发现。观察将揭示某种规律、模式或定律。
——波利亚
1×1=1
11×11=
111×111=
1111×1111=
11111×11111=
111111×111111=
1111111×1111111=
.............................
99
×99=
999
×999=
9999
×9999=
99999×99999
=
999999×999999
=
9999999×9999999
=
99999999×99999999
=
................................
神奇的数字塔
问题
探究
练习
拓展
学习目标:
1.通过有趣的探索活动,体会计算器
不仅是计算工具,而且也是探索数学、学习数学的工具。
2.能发现有趣的乘法算式中蕴含的规律,并有条理的进行概括,发展合情的推理能力。
3.在发现规律的过程中,感受数学的有趣和神奇。
1×1=
11×11=
111×111=
1111×1111=
?
?
121
12321
1234321
123454321
1
回文数
11111×
11111
=
继续写出两个这样算式和结果?
111111
×111111
=
1111111
×1111111
=
…
…
12345654321
1234567654321
总结:如果算式中的两个乘数相同,而且各数位上的数字都是1,则它们的积是回文数。乘数中1的个数是几,积就从1开始按自然数的顺序写到几,再按反顺序写到1
。
不计算,你能直接写出99999×99999
999999×999999的积吗?
我先算一算99
×99,999
×999,
9999
×9999的得数,看看积有什么特点。
和伙伴交流自己的发现!
99
×99
=
999
×999
=
9999
×9999
=
9801
998001
99980001
99999
×99999=
999999
×999999=
9
9
9
9
8
0
0
0
0
1
9
9
9
9
9
8
0
0
0
0
0
1
如果算式中的两个乘数相同,而且各数位上的数字都是9,则积的前半部分比乘数少1,积的后半部分0的个数比乘数的的位数少1,个位上都是1.
1×9+2
=(
)
12
×9+3
=(
)
123
×9+4
=(
)
1234
×9+5
=
___
12345
×9+□=
___
123456
×9+□=
__
观察下面的算式和得数分别有什么特点,你能
再写出几个这样的算式吗?用计算器验证结果。
11
111
1111
11111
6
111111
7
1111111
在乘加算式中,如果第一个乘数是由从1开始的连续的自然数组成的,第二个乘数是9,加上的数比第一个乘数的位数多1,则计算结果由若干个1组成,1的个数与算式中所加的数相同。
142857
×
1=
142857
×2
=
142857
×3
=
142857
×4
=
142857×5=
142857×6=
2
4
5
7
714285
8
857142
算一算
142857×7.
142857
285714
428571
571428
2.寻找神密的四位数。
在0~9的十个数字中,任意选择四个你喜欢的数,组成最大和最小的数,然后两数相减,并把结果的四个数字重新组成一个最大的数和最小的数,再次相减…(如选2,9,8,4这四个数字,组成最大的数是
,最小的数是
.)
两数
相减
9842(最大)
-2489(最小)
7353
得数重组
(最大)
7533
(最小)
-
3357
4176
在这样不断重复的过程
中,你会找到一个神秘
的数吗?
……
9842
2489
两数
相减
7641(最大)
-1467(最小)
6174
得数重组
(最大)
7641
(最小)
-
1467
6174
答:这一个神秘
的四位数是6174.
根据你的发现,写出其它不同的算式.
37037×3=111111
37037×6=222222
37037×9=( )
37037×12=( )
37037×( )=555555
37037×( )=666666
37037×( )=777777
37037×( )=888888
练一练
3
3
3
3
3
3
4
4
4
4
4
4
1
5
18
21
24
这节课你有什么感想或收获?
善于观察
爱动脑筋
积极探索
课后探究作业:
1.探究一个数乘11的规律。
如:34×11
65×11
256×11
2.探究一个数乘99或者乘999的规律。
如:38×99
27×999