人教版八年级数学下册期末复习第十八章平行四边形综合习题一.选择题(共6小题)
1.矩形、菱形、正方形都具有的性质是( )
A.对角线互相垂直
B.对角线相等
C.对角线互相平分
D.每一条对角线平分一组对角
2.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为( )
A.30°
B.60°
C.90°
D.120°
3.如图,?ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若?ABCD的周长为28,则△ABE的周长为( )
A.28
B.24
C.21
D.14
4.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )
A.4
B.6
C.8
D.10
5.如图,在△ABC中,点D,E,F分别是AB,BC,AC的中点,则下列四个判断中不一定正确的是( )
A.四边形ADEF一定是平行四边形
B.若∠B+∠C=90°,则四边形ADEF是矩形
C.若四边形ADEF是菱形,则△ABC是等边三角形
D.若四边形ADEF是正方形,则△ABC是等腰直角三角形
6.如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A.3
B.4
C.5
D.6
二.填空题(共6小题)
7.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,有下列四个条件:①AB=BE;②DE⊥DC;③∠ADB=90°;④CE⊥DE.如果添加其中一个条件就能使四边形DBCE成为矩形,那么这个条件是
.
8.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=
.
9.如图,在平行四边形ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为
.
10.如图所示,E是正方形ABCD边BC上任意一点,EF⊥BO于F,EG⊥CO于G,若AB=10厘米,则四边形EGOF的周长是
厘米.
11.在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为
.
12.如图,在矩形ABCD中,点E为AB中点,连接EC,点P是点B关于直线EC的对称点,连接AP并延长交CD于点F,给出下列结论:①AF∥EC;②PE=DF;③若△PBC是等边三角形,则EC=AB;④若AB=30,BC=20,则AP=17.其中正确的结论有
.(把所有正确结论的序号都填上).
三.解答题(共5小题)
13.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求证:△ABC≌△DEF;
(2)求证:AD与BE互相平分;
(3)若BF=5,FC=4,直接写出EO的长.
14.如图,点E为?ABCD外一点,AE⊥EC,BE⊥ED,对角线AC、BD相交于点O.
求证:?ABCD是矩形.
思路提示:由已知条件得出AC=BD,从而证明?ABCD是矩形.
15.如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.
(1)依题意补全图形;
(2)求证:∠FAC=∠APF;
(3)判断线段FM与PN的数量关系,并加以证明.
16.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
17.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.
人教版八年级数学下册期末复习第十八章平行四边形综合习题
参考答案
一.选择题(共6小题)
1C.
2.B.
3.D.
4.C.
5.C.
6.C.
二.填空题(共6小题)
7.①或③或④.
8.20°.
9.21°.
10.10.
11.5.5,或0.5.
12.
①②③.
三.解答题(共5小题)
13.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求证:△ABC≌△DEF;
(2)求证:AD与BE互相平分;
(3)若BF=5,FC=4,直接写出EO的长.
【解答】(1)证明:如图,连接BD,AE,
∵FB=CE,
∴BC=EF,
又∵AB∥ED,AC∥FD,
∴∠ABC=∠DEF,∠ACB=∠DFE,
在△ABC和△DEF中,,
∴△ABC≌△DEF(ASA);
(2)∵△ABC≌△DEF,
∴AB=DE,
又∵AB∥DE,
∴四边形ABDE是平行四边形,
∴AD与BE互相平分;
(3)解:∵FB=CE=5,FC=4,
∴BE=BF+FC+CE=14,
∵BO=OEBE=7.
14.如图,点E为?ABCD外一点,AE⊥EC,BE⊥ED,对角线AC、BD相交于点O.
求证:?ABCD是矩形.
思路提示:由已知条件得出AC=BD,从而证明?ABCD是矩形.
【解答】证明:连接EO,
∵四边形ABCD是平行四边形,
∴AO=OC,BO=OD,
∵AE⊥EC,BE⊥ED,
∴∠AEC=∠BED=90°,
∴EOAC,EOBD,
∴AC=BD,
∴四边形ABCD是矩形.
15.如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.
(1)依题意补全图形;
(2)求证:∠FAC=∠APF;
(3)判断线段FM与PN的数量关系,并加以证明.
【解答】解:(1)补全图形,如图所示:
(2)证明∵正方形ABCD,
∴∠BAC=∠BCA=45°,∠ABC=90°,
∴∠PAH=45°﹣∠BAE.
∵FH⊥AE.
∴∠APF=45°+∠BAE.
∵BF=BE,
∴AF=AE,∠BAF=∠BAE.
∴∠FAC=45°+∠BAF.
∴∠FAC=∠APF;
(3)FM=PN.
?证明:如图1,过B作BQ∥MN交CD于点Q,
∴MN=BQ,BQ⊥AE.
∵正方形ABCD,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠BAE=∠CBQ.
∴△ABE≌△BCQ(AAS).
∴AE=BQ.
∴AE=MN.
∵∠FAC=∠APF,
∴AF=FP.
∵AF=AE,
∴AE=FP.
∴FP=MN.
∴FM=PN.
16.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠DBC,
∵CQ∥DB,
∴∠BCQ=∠DBC,
∴∠ADB=∠BCQ
∵DP=CQ,
∴△ADP≌△BCQ.
(2)证明:∵CQ∥DB,且CQ=DP,
∴四边形CQPD是平行四边形,
∴CD=PQ,CD∥PQ,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴AB=PQ,AB∥PQ,
∴四边形ABQP是平行四边形,
∵△ADP≌△BCQ,
∴∠APD=∠BQC,
∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,
∴∠ABP=∠APB,
∴AB=AP,
∴四边形ABQP是菱形.
17.如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,MD⊥MP,求AQ的长.
【解答】解:(1)∵△CDQ≌△CPQ,
∴DQ=PQ,PC=DC,
∵AB=DC=5,AD=BC=3,
∴PC=5,
在Rt△PBC中,PB4,
∴PA=AB﹣PB=5﹣4=1,
设AQ=x,则DQ=PQ=3﹣x,
在Rt△PAQ中,(3﹣x)2=x2+12,
解得x,
∴AQ.
(2)方法1,如图2,过M作EF⊥CD于F,则EF⊥AB,
∵MD⊥MP,
∴∠PMD=90°,
∴∠PME+∠DMF=90°,
∵∠FDM+∠DMF=90°,
∴∠MDF=∠PME,
∵M是QC的中点,
∴DMQC,PMQC,
∴DM=PM,
在△MDF和△PME中,
,
∴△MDF≌△PME(AAS),
∴ME=DF,PE=MF,
∵EF⊥CD,AD⊥CD,
∴EF∥AD,
∵QM=MC,
∴DF=CFDC,
∴ME,
∵ME是梯形ABCQ的中位线,
∴2ME=AQ+BC,即5=AQ+3,
∴AQ=2.
方法2、∵点M是Rt△CDQ的斜边CQ中点,
∴DM=CM,
∴∠DMQ=2∠DCQ,
∵点M是Rt△CPQ的斜边的中点,
∴MP=CM,
∴∠PMQ=2∠PCQ,
∵∠DMP=90°,
∴2∠DCQ+2∠PCQ=90°,
∴∠PCD=45°,°∠BCP=90°﹣45°=45°,
∴∠BPC=45°=∠BCP,∴BP=BC=3,
∵∠CPQ=90°,
∴∠APQ=180°﹣90°﹣45°=45°,
∴∠AQP=90°﹣45°=45°=∠APQ,
∴AQ=AP=2.