10.1.3古典概型、10.1.4概率的基本性质-【新教材】2020-2021学年人教A版(2019)高中数学必修第二册复习巩固训练Word含答案

文档属性

名称 10.1.3古典概型、10.1.4概率的基本性质-【新教材】2020-2021学年人教A版(2019)高中数学必修第二册复习巩固训练Word含答案
格式 doc
文件大小 72.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-05-19 19:15:01

图片预览

文档简介

10.1.3古典概型 10.1.4概率的基本性质
一、知识梳理
1.古典概型:具有以下共同特征:
⑴有限性:样本空间的样本点只有________;
⑵等可能性:每个样本点发生的__________。
2. 古典概型的概率公式:设试验E是古典概型,样本空间包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率。其中,分别表示事件A和样本空间包含的样本点个数。
3.概率的基本性质:
⑴如果事件A和事件B互斥,那么.
⑵如果事件A和事件B互为对立事件,那么。
二、重要题型
知识点一:样本点个数的计算
1.一个家庭有两个小孩,对于性别,则所有的样本点是(  )
A.(男,女),(男,男),(女,女)
B.(男,女),(女,男)
C.(男,男),(男,女),(女,男),(女,女)
D.(男,男),(女,女)
知识点二:古典概型的判断
2.下列概率模型:
①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;
②某射手射击一次,可能命中0环,1环,2环,…,10环;
③某小组有男生5人,女生3人,从中任选1人做演讲;
④一只使用中的灯泡的寿命长短;
⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________.
知识点三:古典概型概率的计算
3.甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为(  )
A. B. C. D.
4.一个盒子里装有标号为1,2,3,4的4张形状、大小完全相同的标签,先后随机地选取2张标签,根据下列条件,分别求2张标签上的数字为相邻整数的概率.
(1)标签的选取是无放回的;
(2)标签的选取是有放回的.
知识点四:互斥事件、对立事件的概率
5.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已知P(A)=,P(B)=,则这3个球中既有红球又有白球的概率是________.
6..从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为(  )
A.0.7 B.0.65 C.0.35 D.0.3
7.在5件产品中,有3件一级品和2件二级品,从中任取2件,下列事件中概率为的是(  )
A.都是一级品 B.都是二级品
C.一级品和二级品各1件 D.至少有1件二级品
三、巩固练习
1.甲、乙、丙三名同学站成一排,甲站在中间的概率是 (  )
A. B. C. D.
2.某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为(  )
A. B. C. D.
3.某校高三(1)班50名学生参加1 500 m体能测试,其中23人成绩为A,其余人成绩都是B或C.从这50名学生中任抽1人,若抽得B的概率是0.4,则抽得C的概率是(  )
A.0.14 B.0.20 C.0.40 D.0.60
4.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A∪B)=(  )
A. B. C. D.1
5.同时投掷两个骰子,向上的点数分别记为a,b,则方程2x2+ax+b=0有两个不等实根的概率为(  )
A. B. C. D.
6.在三张奖券中有一、二等奖各一张,另一张无奖,甲、乙两人各抽取一张(不放回),两人都中奖的概率为________.
7.在某学校图书馆的书架上随意放着编号为1,2,3,4,5的五本书,若某同学从中任意选出2本书,则选出的2本书编号相连的概率为________.
8.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.?
9.某商店月收入(单位:元)在下列范围内的概率如下表所示:
月收入 [1 000,1 500) [1 500,2 000) [2 000,2 500) [2 500,3 000)
概率 0.12 a b 0.14
已知月收入在[1 000,3 000)内的概率为0.67,则月收入在[1 500,3 000)内的概率为________.
10.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是________.
11.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
12.某市举行职工技能比赛活动,甲厂派出2男1女共3名职工,乙厂派出2男2女共4名职工.
(1)若从甲厂和乙厂报名的职工中各任选1名进行比赛,求选出的2名职工性别相同的概率;
(2)若从甲厂和乙厂报名的这7名职工中任选2名进行比赛,求选出的这2名职工来自同一工厂的概率.
13.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱
厨余垃圾 400 100 100
可回收物 30 240 30
其他垃圾 20 20 60
(1)试估计厨余垃圾投放正确的概率;
(2)试估计生活垃圾投放错误的概率.
10.1.3古典概型 10.1.4概率的基本性质
参考答案
一、知识梳理
1. 有限个, 可能性相等.
2. .
3. ,.
二、重要题型
1.C 把第一个孩子的性别写在前边,第二个孩子的性别写在后边,则所有的样本点是(男,男),(男,女),(女,男),(女,女).故选C.
2.③ ①不属于,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.
3.B 两人分别从1,2,3,4四个数中任取一个,这个试验共包含16个样本点,这16个样本点发生的可能性是相等的,其中“|a-b|≤1”包含的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为=.
4.解:记事件A为“选取的2张标签上的数字为相邻整数”.
(1)从4张标签中无放回地随机选取2张,则试验的样本空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)},共有12个样本点,这12个样本点出现的可能性是相等的,A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},包含6个样本点.由古典概型的概率计算公式知P(A)==,故无放回地选取2张标签,这2张标签上数字为相邻整数的概率为.
(2)从4张标签中有放回地随机选取2张,则试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共有16个样本点,这16个样本点出现的可能性是相等的.A={(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)},包含6个样本点,这6个样本点出现的可能性是相等的.由古典概型的概率计算公式知P(A)==,故有放回地选取2张标签,这2张标签上数字为相邻整数的概率为.
5. 记事件C为“3个球中既有红球又有白球”,则它包含事件A“3个球中有1个红球,2个白球”和事件B“3个球中有2个红球,1个白球”,而且事件A与事件B是互斥的,
所以P(C)=P(A∪B)=P(A)+P(B)=+=.
6.C 由对立事件的概率关系知抽到的不是一等品的概率为P=1-0.65=0.35.
7.D 设A1,A2,A3分别表示3件一级品,B1,B2分别表示2件二级品.任取2件,则样本空间Ω={A1A2,A1A3,A2A3,A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,B1B2},共10个样本点,每个样本点出现的可能性相等.事件A表示“2件都是一级品”,包含3个样本点,则P(A)=,
事件B表示“2件都是二级品”,包含1个样本点,则P(B)=,事件C表示“2件中一件一级品、一件二级品”,包含6个样本点,则P(C)==.事件A,B,C互斥,P(B)+P(C)=,B∪C表示“至少有1件二级品”,故选D.
三、巩固练习
1.C. 样本空间的样本点为:甲乙丙、甲丙乙、乙甲丙、乙丙甲、丙甲乙、丙乙甲,共6个,甲站在中间的事件包括:乙甲丙、丙甲乙,共2个,所以甲站在中间的概率P==.
2.B. 所有样本点为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1).其中从左到右或从右到左恰好为第1,2,3册包含2个样本点,所以P==.故选B.
3.A. 由于成绩为A的有23人,故抽到C的概率为1--0.4=0.14.故选A.
4.B. 法一:A包含向上点数是1,3,5的情况,B包含向上的点数是1,2,3的情况,所以A∪B包含了向上点数是1,2,3,5的情况.故P(A∪B)==.
法二:P(A∪B)=P(A)+P(B)-P(AB)=+-=1-=.
5.B.因为方程2x2+ax+b=0有两个不等实根,所以Δ=a2-8b>0,又同时投掷两个骰子,向上的点数分别记为a,b,则共包含36个样本点,满足a2-8b>0的有(6,1),(6,2),
(6,3),(6,4),(5,1),(5,2),(5,3),(4,1),(3,1)共9个样本点,所以方程
2x2+ax+b=0有两个不等实根的概率为=.故选B.
6. 设一、二等奖分别用A,B表示,另一张无奖用C表示,甲、乙两人各抽取一张,这个试验的样本空间Ω={AB,AC,BA,BC,CA,CB},共包含6个样本点,这6个样本点发生的可能性是相等的.其中两人都中奖的事件包含的样本点有AB,BA,共2个,故所求的概率P==.
7. 从五本书中任意选出2本书的所有可能情况为(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10种,满足2本书编号相连的所有可能情况为(1,2)、(2,3)、(3,4)、(4,5)共4种,故选出的2本书编号相连的概率为=.
8. 用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的样本空间Ω={AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc},其中事件“2名都是女同学”包含样本点的个数为3,故所求的概率为=.
9. 0.55 记这个商店月收入在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000)范围内的事件分别为A,B,C,D,因为事件A,B,C,D互斥,且P(A)+P(B)+P(C)+P(D)=0.67,所以P(B+C+D)=0.67-P(A)=0.55.
10. 由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个,且组成这24个自然数的可能性是相等的.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以组成的三位数为“有缘数”的概率为=.
11.解:甲校的男教师用A,B表示,女教师用C表示,乙校的男教师用D表示,女教师用E,F表示.
(1)根据题意,从甲校和乙校报名的教师中各任选1名,这个试验的样本空间Ω1={AD,AE,AF,BD,BE,BF,CD,CE,CF},共有9个样本点,这9个样本点发生的可能性是相等的.
其中“选出的2名教师性别相同”包含的样本点有AD,BD,CE,CF,共4个.
故选出的2名教师性别相同的概率P1=.
(2)若从报名的6名教师中任选2名,这个试验的样本空间Ω2={AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF},共有15个样本点,这15个样本点发生的可能性是相等的.其中“选出的2名教师来自同一个学校”包含的样本点有AB,AC,BC,DE,DF,EF,共6个样本点.故选出的2名教师来自同一学校的概率P2==.
12.解:记甲厂派出的2名男职工为A1,A2,1名女职工为a;乙厂派出的2名男职工为B1,B2,2名女职工为b1,b2.
(1)从甲厂和乙厂报名的职工中各任选1名,不同的结果有(A1,B1),(A1,B2),(A1,b1),(A1,b2),(A2,B1),(A2,B2),(A2,b1),(A2,b2),(a,B1),(a,B2),(a,b1),(a,b2),共12种.其中选出的2名职工性别相同的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(a,b1),(a,b2),共6种.故选出的2名职工性别相同的概率P==.
(2)若从甲厂和乙厂报名的这7名职工中任选2名,不同的结果有(A1,A2),(A1,a),(A1,B1),(A1,B2),(A1,b1),(A1,b2),(A2,a),(A2,B1),(A2,B2),(A2,b1),(A2,b2),(a,B1),(a,B2),(a,b1),(a,b2),(B1,B2),(B1,b1),(B1,b2),(B2,b1),(B2,b2),
(b1,b2),共21种.其中选出的2名职工来自同一工厂的选法有(A1,A2),(A1,a),
(A2,a),(B1,B2),(B1,b1),(B1,b2),(B2,b1),(B2,b2),(b1,b2),共9种.
故选出的2名职工来自同一工厂的概率为P==.
13.解:(1)设“厨余垃圾”箱里厨余垃圾量为m吨,厨余垃圾总量为n吨,则m=400,n=400+100+100=600.所以厨余垃圾投放正确的概率约为==.
(2)设“生活垃圾投放错误”为事件A,则事件表示“生活垃圾投放正确”,从而P()==0.7,所以P(A)=1-P()=1-0.7=0.3.