绝密★启用前
110
牛顿第二定律的应用—动力学基本问题(例题)
【例1】为了研究鱼所受水的阻力与其形状的关系,小明同学用石蜡做成两条质量均为m、形状不同的“A鱼”和“B鱼”,如图所示.在高出水面H处分别静止释放“A鱼”和“B鱼”,“A鱼”竖直下潜hA后速度减小为零,“B鱼”竖直下潜hB后速度减小为零.“鱼”在水中运动时,除受重力外,还受到浮力和水的阻力.已知“鱼”在水中所受浮力是其重力的
倍,重力加速度为g,“鱼”运动位移值远大于“鱼”的长度.假设“鱼”运动时所受水的阻力恒定,空气阻力不计.求:
(1)“A鱼”入水瞬间的速度VA
(2)“A鱼”在水中运动时所受阻力fA
(3)“A鱼”和“B鱼”在水中运动时所受阻力之比fA:fB.
【考点】1E:匀变速直线运动的位移与时间的关系;1J:自由落体运动;37:牛顿第二定律;65:动能定理.版权所有
【专题】522:牛顿运动定律综合专题.
【分析】(1)A鱼入水前做自由落体运动,根据速度位移公式列式求解;
(2)对A鱼入水过程运用动能定理列式求解;
(3)对B鱼从释放到停止整个过程运用动能定理列式求解阻力,然后求解“A鱼”和“B鱼”在水中运动时所受阻力之比.
【解答】解:(1)A鱼入水前做自由落体运动,根据速度位移公式,有:
解得:
(2)A鱼入水后,受重力、浮力和阻力,根据动能定理,有:
mghA﹣fAhA﹣F浮hA=0﹣
其中:
解得:
(3)同理
解得
答:(1)“A鱼”入水瞬间的速度为;
(2)“A鱼”在水中运动时所受阻力为;
(3)“A鱼”和“B鱼”在水中运动时所受阻力之比.
【点评】本题关键是明确鱼的运动,然后根据动能定理多次列式求解;也可以根据运动学规律和牛顿第二定律列式求解,会使问题复杂化.
【例2】如图,质量m=2kg的物体静止于水平地面的A处,A、B间距L=20m。用大小为30N,沿水平方向的外力拉此物体,经t0=2s拉至B处。(已知cos37°=0.8,sin37°=0.6.取g=10m/s2)
(1)求物体与地面间的动摩擦因数μ;
(2)用大小为30N,与水平方向成37°的力斜向上拉此物体,使物体从A处由静止开始运动并能到达B处,求该力作用的最短时间t。
【考点】1D:匀变速直线运动的速度与时间的关系;1E:匀变速直线运动的位移与时间的关系;37:牛顿第二定律.版权所有
【分析】(1)根据匀变速直线运动的位移公式可以求得物体的加速度的大小,在根据牛顿第二定律可以求得摩擦力的大小,进而可以求得摩擦因数的大小;
(2)当力作用的时间最短时,物体应该是先加速运动,运动一段时间之后撤去拉力F在做减速运动,由运动的规律可以求得时间的大小。
【解答】解:(1)物体做匀加速运动
L=at02
所以a===10m/s2
由牛顿第二定律F﹣f=ma
f=30﹣2×10=10N
所以
μ===0.5
即物体与地面间的动摩擦因数μ为0.5;
(2)设F作用的最短时间为t,小车先以大小为a的加速度匀加速t秒,撤去外力后,以大小为a′的加速度匀减速t′秒到达B处,速度恰为0,
由牛顿定律
Fcos37°﹣μ(mg﹣Fsin37°)=ma
a′==μg=5
m/s2
由于匀加速阶段的末速度即为匀减速阶段的初速度,因此有
at=a′t′
t′=t=t=2.3t
L=at2+a′t′2
所以t==≈1s
即该力作用的最短时间为1s。
【点评】分析清楚物体的运动的过程,分别对不同的运动的过程列示求解即可得出结论。
【例3】如图所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=.重力加速度g取10m/s2.
(1)求物块加速度的大小及到达B点时速度的大小.
(2)拉力F与斜面的夹角多大时,拉力F最小?拉力F的最小值是多少?
【考点】1D:匀变速直线运动的速度与时间的关系;1E:匀变速直线运动的位移与时间的关系;37:牛顿第二定律.版权所有
【专题】16:压轴题;522:牛顿运动定律综合专题.
【分析】(1)物体做匀加速直线运动,根据运动学公式求解加速度和末速度;
(2)对物体受力分析,受重力、拉力、支持力和滑动摩擦力,根据牛顿第二定律列式求解出拉力F的表达式,分析出最小值.
【解答】解:(1)物体做匀加速直线运动,根据运动学公式,有:
①
v=v0+at
②
联立解得;
a=3m/s2
v=8m/s
(2)对物体受力分析,受重力、拉力、支持力和滑动摩擦力,如图
根据牛顿第二定律,有:
平行斜面方向:Fcosα﹣mgsin30°﹣Ff=ma
垂直斜面方向:Fsinα+FN﹣mgcos30°=0
其中:Ff=μFN
联立解得:
F==
故当α=30°时,拉力F有最小值,为Fmin=N;
答:
(1)物块加速度的大小为3m/s2,到达B点的速度为8m/s;
(2)拉力F与斜面的夹角30°时,拉力F最小,最小值是N.
【点评】本题是已知运动情况确定受力情况,关键先根据运动学公式求解加速度,然后根据牛顿第二定律列式讨论.
【例4】可爱的企鹅喜欢在冰面上游玩,如图所示,有一企鹅在倾角为37°的斜面上,先以加速度a=0.5m/s2从冰面底部由静止开始沿直线向上“奔跑”,t=0.8s时,突然卧倒以肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保持不变)。若企鹅肚皮与冰面间的动摩擦因数μ=0.25,已知sin37°=0.6,cos37°=0.8.求:
(1)企鹅向上“奔跑”的位移大小;
(2)企鹅在冰面上滑动的加速度大小;
(3)企鹅退滑到出发点的速度大小。(计算结果可用根式表示)
【考点】1E:匀变速直线运动的位移与时间的关系;37:牛顿第二定律.版权所有
【专题】11:计算题;22:学科综合题;32:定量思想;49:合成分解法;522:牛顿运动定律综合专题.
【分析】(1)根据位移时间公式求解企鹅向上“奔跑”的位移大小;
(2)企鹅在冰面上滑动时做匀减速运动,根据牛顿第二定律求加速度大小;
(3)根据动能定理得求企鹅退滑到出发点的速度大小。
【解答】解:(1)企鹅向上“奔跑”的位移大小为:
x==m=0.16m
(2)企鹅在冰面上滑动过程,由牛顿第二定律得:
mgsin37°+μmgcos37°=ma′
代入数据得:a′=8m/s2。
(3)企鹅在冰面上滑动时做匀减速运动,匀减速的初速度为:
v=at=0.5×0.8m/s=0.4m/s
匀减速的位移为:
x′==m=0.01m
下滑过程,由动能定理得:
(mgsin37°﹣μmgcos37°)(x+x′)=
解得:v′=m/s
答:(1)企鹅向上“奔跑”的位移大小是0.16m;
(2)企鹅在冰面上滑动的加速度大小是8m/s2;
(3)企鹅退滑到出发点的速度大小是m/s。
【点评】本题考查牛顿第二定律、运动学公式和动能定理的应用,会灵活选择公式,还要抓住上滑和下滑的位移关系。
第4页(共6页)英恋物理
考物理顶层
考点考向通01
牛顿第二定律的应用一动力学基本问题
资料编号:110
1.动力学的两类基本问题
习题编号:110
类:已知受
求物体的运动
第二类:已知运动情况求物体的受力情况
决两类基本问題的方法:以加速度为“桥梁”,由运动学公式和牛顿运动定律
程求解
辑关系如图
由力求运动
牛顿第二定律
受力情况
加速)运动学公式
运动情况
由运动求力
(1)已知物体的受力情况,求解物体的
物体的受力情况一→物体的合外力一→加速度一→运动学公式一→物体的运动情况
2)已知物体的
求解物体的受
物体的运动情况一→运动学公式一→加速度一→物体的合外力一→物体的受力情况
解决两类动力学问题的一般步骤
根据问题的需要和解题的方便,选出被
可简记为
明确研究对象→研究的物体。研究对象可以是某个物体
也可以是几个物体构成的系统
选对象,建模型
受力分析和运,画好受力分析图、情景示意图,明确物
画草图,想情景;
动状态分析
体的运动性质和运动过程
分析状态和过程
找规律、列方程
选取正方向或)通常以加速度的方向为正方向或以加速
建立坐标系
度方向为某一坐标的正方向
检验结果行不行。
若物体只受两个共点力作用,通用合
确定合外力F
成法;若物体受到三个或三个以上不在
同一直线上的力的作用,一般用正交分
解法
根据牛顿第二定律F合=ma或
列方程求解
列方程求解,必要时还要对结果进行讨论
特别提醒
(1)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形
定则求其合力;如果物体受力较多,一般用正交分解法将物体受到的力分解到两个方向
上分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和与运动方向垂
直的方向上。
(2)根据牛顿第二定律和运动学公式列方程时,物体所受外力、加速度、速度等都可以先
根据规定的正方向确定其符号,然后代入公式,按代数方法进行运算。
英恋物理
《高考物理顶层
系列资料考点考向通02
多过
分析方法
将“多过程”分解为许多“子过程
过程”间由“衔接点”连接
分析和运动分析,必要时画出受力图和过程示意图
根据“子过程”和“衔接点?"的模型特点选择合理的动力掌规律列方程
分析“衔接点”位移
加速度等的关联,确定各段间的时间关系、位移关
度关系等,并列出相关的辅助方
联立方程组,分析求解,并对结果进行必要的讨论或验证
例1】为了研究鱼所受水的阻力与其形状的关系,小明同学
做成两条质量均为
高出水面H处分别静止释
鱼
下潜hA后速度减小为零
直下潜h后
速度减小为零.“鱼”在水中运动时,除受重力外,还受到浮力
H
和水的阻力,已知“鱼”在水中所受浮力是其重力的一倍,重
移值远大于“鱼”的长度,假
动时所受水的阻力
力
水瞬间的速度
h
(2)“A鱼”在水中运动时所受
)“A鱼”和“B鱼”在水中运动时所受阻力之
图,质量m
物体静止于水平地
为
30N,沿水平方向的外力拉此物体,经t=2s拉至B处。(已知cos
0.6.取g=10m/s2)
(1)求物体与地面间的动摩擦因数μ;
2)用大小
与水平方向成37的
拉此物体,使物体从A处由静止开始运
处,求该力作用的最短时
例3】如图所
质
4kg的小物块,以vo=2m/s的初速度,在与斜面成某一夹
角的拉
上做匀加速运动,经
时间物块由A点运动到
知斜面倾角θ=30°,物块与斜面之间的动摩擦因数
重
力加速度g取l0ms
求物块加速度的大小及到达B点时速度的大小
的夹角多大
力F最小?拉力F的最
值是多少
【例4】
鹅喜欢在冰面上游玩,如图所示,有一企鹅在倾角为37
速度a=0.5ms2从冰面底部由静止开始沿直线向上“奔跑”,t=0.8s时,突然卧倒
肚皮贴着冰面向前滑行,最后退滑到出发点,完成一次游戏(企鹅在滑动过程中姿势保
持不变)。若企鹅肚皮与冰面间的动摩擦因数μ=0.25.已知sin37=0
求
奔跑”的位移大
(2)企鹅在冰面上滑动的加速度大小
(3)企鹅退滑到出发点的速度大小。(计算结果
用根式表示)