10.5 用二元一次方程组解决问题 高频易错题汇编(含解析)

文档属性

名称 10.5 用二元一次方程组解决问题 高频易错题汇编(含解析)
格式 rar
文件大小 270.2KB
资源类型 试卷
版本资源 苏科版
科目 数学
更新时间 2021-05-20 14:02:28

图片预览

文档简介

中小学教育资源及组卷应用平台
10.5 用二元一次方程组解决问题 高频易错题汇编
一、选择题(共11小题)
1.为了奖励进步较大的学生,某班决定购买甲、乙、丙三种钢笔作为奖品,其单价分别为4元、5元、6元,购买这些钢笔需要花60元;经过协商,每种钢笔单价下降1元,结果只花了48元,那么甲种钢笔可能购买(  )
A.11支 B.9支 C.7支 D.4支
2.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目 里程费 时长费 远途费
单价 1.8元/公里 0.3元/分钟 0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差(  )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
3.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有(  )
A.9天 B.11天 C.13天 D.22天
4.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则原来的两位数是(  )
A.36 B.25 C.61 D.16
5.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为(  )
A.562.5元 B.875元 C.550元 D.750元
6.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有(  )
A.4种 B.3种 C.2种 D.1种
7.某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有(  )
A.15种 B.11种 C.5种 D.3种
8.如图,长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长和为l,则标号为①的正方形的边长为(  )
A.l B.l C.l D.l
9.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有(  )
A.3种 B.4种 C.5种 D.6种
10.利用两块完全一样的长方体木块测量一张桌子的高度,首先按图①所示的方式放置,再交换两木块的位置,按图②所示的方式放置.测量的数据如图,则桌子的高度等于(  )
A.80cm B.75cm C.70cm D.65cm
11.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(  )
A.7,6,1,4 B.6,4,1,7 C.4,6,1,7 D.1,6,4,7
二、填空题(共5小题)
12.清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有   名同学.
13.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶   km.
14.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为   只,树为   棵.
15.如图(1),在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图(2).这个拼成的长方形的长为30,宽为20.则图(2)中Ⅱ部分的面积是   .
16.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为55cm,此时木桶中水的深度是   cm.
三、解答题(共5小题)
17.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?
18.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:
类别/单价 成本价 销售价(元/箱)
甲 24 36
乙 33 48
(1)该商场购进甲、乙两种矿泉水各多少箱?
(2)全部售完500箱矿泉水,该商场共获得利润多少元?
19.某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.
(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;
(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?
(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.
20.某景点的门票价格如表:
购票人数/人 1~50 51~100 100以上
每人门票价/元 12 10 8
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.
(1)两个班各有多少名学生?
(2)团体购票与单独购票相比较,两个班各节约了多少钱?
试题解析
一、选择题(共11小题)
1.解:设甲种钢笔有x支、乙种钢笔有y支、丙种钢笔有z支,则

其中x=11,x=9,x=7时都不符合题意;
x=4时,y=4,z=4符合题意.
答案:D.
2.解:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:
1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7),
10.8+0.3x=16.5+0.3y,
0.3(x﹣y)=5.7,
x﹣y=19.
故这两辆滴滴快车的行车时间相差19分钟.
答案:D.
3.解:解法一:设有x天早晨下雨,这一段时间有y天,
根据题意得:
①+②得:2y=22
y=11
所以一共有11天,
解法二:设一共有x天,早晨下雨的有y天,晚上下雨的有z天,
根据题意得:,
解得:,
所以一共有11天,
答案:B.
4.解:设原来的两位数个位数字为x,十位数字为y,由题意得:

解得:.
则原来的两位数是16.
答案:D.
5.解:设该商品的进价为x元,标价为y元,由题意得

解得:x=2500,y=3750.
则3750×0.9﹣2500=875(元).
答案:B.
6.解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间,
根据题意得:2x+3y+4(5﹣x﹣y)=15,
2x+y=5,
当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2,
当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1,
当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0,
因为同时租用这三种客房共5间,则x>0,y>0,
所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;
②租二人间1间,三人间3间,四人间1间;
答案:C.
7.解:设胜的场数为x,平的场数为y,那么负的场数为(15﹣x﹣y)
3x+y+0(15﹣x﹣y)=33
y=33﹣3x
x,y为正整数或0,x+y≤15
答案:D.
8.解:长方形ABCD被分成3个正方形和2个长方形后仍是中心对称图形,
∴两个大正方形相同、2个长方形相同.
设两个大正方形边长为y,小正方形的边长为x,
∴小长方形的边长分别为(y﹣x)、(x+y),大长方形边长为(2y﹣x)、(2y+x),
∵大长方形周长=l,即:2[(2y﹣x)+(2y+x)]=l,
∴8y=l,
∴y=
∵3个正方形和2个长方形的周长和为l,
即:,
∴16y+4x=,
∴x=,
则标号为①的正方形的边长,
答案:B.
9.解:设购买A品牌足球x个,购买B品牌足球y个,
依题意,得:60x+75y=1500,
∴y=20﹣x.
∵x,y均为正整数,
∴,,,,
∴该学校共有4种购买方案.
答案:B.
10.解:设长方体木块长xcm、宽ycm,桌子的高为acm,
由题意得:,
两式相加得:2a=150,
解得:a=75,
答案:B.
11.解:依题意,得

解得.
∴明文为:6,4,1,7.
答案:B.
二、填空题(共5小题)
12.解:设一共分为x个小组,该班共有y名同学,
根据题意得,
解得.
答:该班共有59名同学.
答案:59.
13.解:设每个新轮胎报废时的总磨损量为k,则安装在前轮的轮胎每行驶1km磨损量为,安装在后轮的轮胎每行驶1km的磨损量为.
又设一对新轮胎交换位置前走了xkm,交换位置后走了ykm.
分别以一个轮胎的总磨损量为等量关系列方程,有
两式相加,得,
则(千米).
答案:3750.
14.解:可设鸦有x只,树y棵.
则,
解得.
答:鸦有20只,树有5棵.
15.解:根据题意得出:

解得:,
故图(2)中Ⅱ部分的面积是:AB?BC=5×20=100,
答案:100.
16.解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.
因为两根铁棒之和为55cm,故可列x+y=55,
又知两棒未露出水面的长度相等,故可知x=y,
据此可列:,
解得:,
因此木桶中水的深度为30×=20cm.
故填20.
三、解答题(共5小题)
17.解:(1)解分三种情况计算:
①设购甲种电视机x台,乙种电视机y台.
解得.
②设购甲种电视机x台,丙种电视机z台.
则,
解得:.
③设购乙种电视机y台,丙种电视机z台.

解得:(不合题意,舍去);
(2)方案一:25×150+25×200=8750.
方案二:35×150+15×250=9000元.
答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.
购买甲种电视机35台,丙种电视机15台获利最多.
18.解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得

解得:.
答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱.
(2)300×(36﹣24)+200×(48﹣33)
=3600+3000
=6600(元).
答:该商场共获得利润6600元.
19.解:(1)若设购进A种彩票x张,B种彩票y张,
根据题意得:x+y=1000×20;1.5x+2y=45000,
解得:x=﹣10000,y=30000,
∴x<0,不合题意;
若设购进A种彩票x张,C种彩票y张,
根据题意得:x+y=1000×20;1.5x+2.5y=45000,
解得:x=5000,y=15000,
若设购进B种彩票x张,C种彩票y张,
根据题意得:2x+2.5y=45000;x+y=1000×20.
解得:x=10000,y=10000,
综上所述,若经销商同时购进两种不同型号的彩票共有两种方案可行,
即A种彩票5扎,C种彩票15扎或B种彩票与C种彩票各10扎;
(2)若购进A种彩票5扎,C种彩票15扎,
销售完后获手续费为0.2×5000+0.5×15000=8500(元),
若购进B种彩票与C种彩票各10扎,
销售完后获手续费为0.3×10000+0.5×10000=8000(元),
∴为使销售完时获得手续最多选择的方案为A种彩票5扎,C种彩票15扎;
(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎.
设购进A种彩票m扎,B种彩票n扎,C种彩票h扎.
由题意得:m+n+h=20;1.5×1000m+2×1000n+2.5×1000h=45000,即h=m+10,
∴n=﹣2m+10,
∵m、n都是正数
∴1≤m<5,
又m为整数共有4种进票方案,具体如下:
方案1:A种1扎,B种8扎,C种11扎;
方案2:A种2扎,B种6扎,C种12扎;
方案3:A种3扎,B种4扎,C种13扎;
方案4:A种4扎,B种2扎,C种14扎.
20.解:(1)若不超过100人时,设人数为w人,则有10w=816,则w不是整数,不合题意,故两个班学生人数之和超过100人;设七年级(1)班有x人、七年级(2)班有y人,由题意,得

解得:.
答:七年级(1)班有49人、七年级(2)班有53人;
(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,
七年级(2)班节省的费用为:(10﹣8)×53=106元.
21.解:设每块长方形地砖的长为xcm,宽为ycm.
依题意得,
解得,
答:长方形地砖的长为45cm,宽为15cm.
_21?????????è?????(www.21cnjy.com)_