中小学教育资源及组卷应用平台
11.6 一元一次不等式组 高频易错题汇编
一、选择题(共10小题)
1.若不等式组有解,则k的取值范围是( )
A.k<2 B.k≥2 C.k<1 D.1≤k<2
2.若不等式组无解,那么m的取值范围是( )
A.m>2 B.m<2 C.m≥2 D.m≤2
3.关于x的不等式组的解集为x<3,那么m的取值范围为( )
A.m=3 B.m>3 C.m<3 D.m≥3
4.关于x的不等式组只有4个整数解,则a的取值范围是( )
A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣
5.不等式组的解集在数轴上表示为( )
A. B.
C. D.
6.若不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,则a的取值范围是( )
A.1<a≤7 B.a≤7 C.a<1或a≥7 D.a=7
7.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值可以是( )
A.40 B.45 C.51 D.56
8.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )
A.4种 B.3种 C.2种 D.1种
9.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )
A.
B.
C.
D.
10.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式组为( )
A.8(x﹣1)<5x+12<8 B.0<5x+12<8x
C.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8
二、填空题(共5小题)
11.不等式组的所有整数解的和为 .
12.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 .
13.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是 .
14.对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是 .
15.武汉东湖高新开发区某企业新增了一个项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:
A型 B型
价格(万元/台) 12 10
月污水处理能力(吨/月) 200 160
经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.设购买A种型号的污水处理设备x台,可列不等式组 .
三、解答题(共3小题)
16.解不等式组,并将它的解集在数轴上表示出来.
17.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.
(1)请问榕树和香樟树的单价各多少?
(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵数不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.
18.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
试题解析
一、选择题(共10小题)
1.解:因为不等式组有解,根据口诀可知k只要小于2即可.
答案:A.
2.解:,
由①得,x>2,
由②得,x<m,
又因为不等式组无解,
所以根据“大大小小解不了”原则,
m≤2.答案:D.
3.解:不等式组变形得:,
由不等式组的解集为x<3,
得到m的范围为m≥3,
答案:D.
4.解:不等式组的解集是2﹣3a<x<21,
因为不等式组只有4个整数解,则这4个解是20,19,18,17.
所以可以得到16≤2﹣3a<17,
解得﹣5<a≤﹣.
答案:C.
5.解:不等式组
由①得,x>1,
由②得,x≥2,
故不等式组的解集为:x≥2,
在数轴上可表示为:
答案:A.
6.解:解不等式2x<4得:x<2,
∵不等式2x<4的解都能使关于x的一次不等式(a﹣1)x<a+5成立,
∴a﹣1>0,
x,
∴≥2,
﹣2≥0,
≥0,
≥0,
∵a﹣1>0,
∴
解得:1<a≤7,
答案:A.
7.解:根据题意得:
5≤<5+1,
解得:46≤x<56,
答案:C.
8.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.
依题意得:,
解得:x>1.
∵2x+y=8,y>0,7﹣x﹣y>0,
∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.
故有2种租房方案.
答案:C.
9.解:∵若每间住4人,则还有19人无宿舍住,
∴学生总人数为(4x+19)人,
∵一间宿舍不空也不满,
∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,
∴列的不等式组为:
答案:D.
10.解:设有x人,则苹果有(5x+12)个,由题意得:
0<5x+12﹣8(x﹣1)<8,
答案:C.
二、填空题(共5小题)
11.解:,
由①得:x≥﹣2,
由②得:x<2,
∴﹣2≤x<2,
∴不等式组的整数解为:﹣2,﹣1,0,1.
所有整数解的和为﹣2﹣1+0+1=﹣2.
答案:﹣2.
12.解:解不等式组可得解集为2b+3<x<
因为不等式组的解集为﹣1<x<1,所以2b+3=﹣1,=1,
解得a=1,b=﹣2代入(a+1)(b﹣1)=2×(﹣3)=﹣6.
答案:﹣6.
13.解:我们用逆向思维来做:
第一个数就是直接输出其结果的:5x+1=656,
解得:x=131;
第二个数是(5x+1)×5+1=656,
解得:x=26;
同理:可求出第三个数是5;
第四个数是,
∴满足条件所有x的值是131或26或5或.
答案:131或26或5或.
14.解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5
解得13≤x<15.
故答案是:13≤x<15.
15.解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,
根据题意,得,
答案:.
三、解答题(共3小题)
16.解:由①得:﹣2x≥﹣2,即x≤1,
由②得:4x﹣2<5x+5,即x>﹣7,
所以﹣7<x≤1.
在数轴上表示为:
17.解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,
根据题意得,,
解得,
答:榕树和香樟树的单价分别是60元/棵,80元/棵;
(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,
根据题意得,,
解不等式①得,a≥58,
解不等式②得,a≤60,
所以,不等式组的解集是58≤a≤60,
∵a只能取正整数,
∴a=58、59、60,
因此有3种购买方案:
方案一:购买榕树58棵,香樟树92棵,
方案二:购买榕树59棵,香樟树91棵,
方案三:购买榕树60棵,香樟树90棵.
18.解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
根据题意得方程组得:,
解方程组得:,
∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;
(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
∴,
解得:50≤x≤53,
∵x 为正整数,x=50,51,52,53
∴共有4种进货方案,
分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;
方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;
方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;
方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.
(3)因为B种纪念品利润较高,故B种数量越多总利润越高,
设利润为W,则W=20x+30(100﹣x)=﹣10x+3000.
∵k=﹣10<0,
∴W随x大而小,
∴选择购A种50件,B种50件.
总利润=50×20+50×30=2500(元)
∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.
_21?????????è?????(www.21cnjy.com)_