5.3.1简单的轴对称图形(1)
第五章
生活中的轴对称
2021年春北师大版七年级数学下册
1、理解等腰三角形和等边三角形的轴对称性及其相关性质;(重点)
2、会应用等腰三角形和等边三角形的性质解决实际问题。(难点)
学习目标
1.观察下列各种图形,判断是不是轴对称图形?
1
2
3
4
5
6
7
8
2, 3, 5是轴对称图形
新课导入
2.轴对称的性质
打开
1.对应点所连的线段被对称轴垂直平分
2.对应线段相等,对应角相等
新课导入
3.生活中的等腰三角形:
新课导入
等腰三角形的性质
如图,在△ABC中,AB=AC,则三角形为等腰三角形.
它的各部分名称分别是什么?
A
B
C
(1)相等的两条边都叫腰;
腰
腰
底边
(2)另一边叫底边;
顶角
底角
底角
(3)两腰的夹角∠A叫顶角;
(4)腰与底边夹角∠B、∠C叫底角.
探究新知
1.等腰三角形是轴对称图形吗?找出对称轴。
2.顶角的平分线所在的直线是等腰三角形的对称轴吗?
3.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在直线呢?
4.沿对称轴对折,你能发现等腰三角形的哪些特征?
思考
探究新知
剪一剪:把一张长方形的纸按图中的红线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?
互动探究
A
B
C
AB=AC
等腰三角形
探究新知
折一折:△ABC 是轴对称图形吗?它的对称轴是什么?
A
C
D
B
折痕所在的直线是它的对称轴.
等腰三角形是轴对称图形.
探究新知
找一找:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.
重合的线段
重合的角
A
C
B
D
AB与AC
BD与CD
AD与AD
∠B 与∠C.
∠BAD 与∠CAD
∠ADB 与∠ADC
猜一猜: 由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想.
探究新知
(1)等腰三角形是轴对称图形.
(2)∠B =∠C.
(3)∠BAD=∠CAD,AD为顶角的平分线.
(4)∠ADB=∠ADC=90°,AD为底边上的高.
(5)BD=CD,AD为底边上的中线.
A
B
C
D
现象
探究新知
A
B
C
D
解:在ΔABC中,∵AD是角平分线,
∴∠BAD=∠CAD.
在ΔABD和ΔACD中,
∵AB=AC,∠BAD=∠CAD,AD=AD,
∴ΔABD≌ΔACD.
∴BD=CD, ∠ADB=∠ADC=90?.
∴AD是ΔABC的角平分线、底边上的中线、底边上的高.
三线合一吗?
探究新知
等腰三角形是轴对称图形.
等腰三角形的顶角平分线、底边上的高和底边上的中线互相重合(简称“三线合一”).
归纳总结
等腰三角形的两个底角相等.
画出任意一个等腰三角形的底角平分线、这个底角所对的腰上的中线和高,看看它们是否重合?
不重合!
三线合一
为什么不一样?
探究新知
等边三角形的性质
认识等边三角形
三边都相等的三角形是等边三角形也叫正三角形
A
B
C
AB=BC=AC
探究新知
(1)等边三角形是轴对称图形吗?找出对称轴
(2)你能发现它的哪些特征?
思考:
探究新知
等边三角形是轴对称图形,共有三条对称轴。
等边三角形每个角的平分线和这个角的对边上的中线、高线重合(简称“三线合一”),它们所在的直线都是等边三角形的对称轴。
归纳总结
等边三角形的各角都相等,都等于60°
1、下列图形一定是轴对称图形的是( )
A.锐角三角形 B.直角三角形 C.等腰三角形
D.不等边三角形 E.钝角三角形 F.等边三角形
C、F
课堂练习
2、在等腰△ABC中,若AB=AC,∠A=108°,则∠B= , ∠C= 。
3、在等腰△ABC中,若AB=AC, ∠B=42°,则∠A= 。
36°
36°
96°
课堂练习
4、等腰三角形若一内角为80°,则另两内角度数分别是 _______
5、等边三角形的内角均为 ,它有 条对称轴。
50°、50°或80°、20°
60°
三
课堂练习
6.如果ΔABC是轴对称图形,则它的对称轴一定是( )
A. 某一条边上的高。
B. 某一条边上的中线。
C. 平分一角和这个角的对边的直线。
D. 某一个角的平分线。
C
课堂练习
7.一等腰三角形的两边长为2和4,则该等腰三角形的周长为______.
8.一等腰三角形的两边长为3和4,则该等腰三角形的周长为________.
10
10或11
课堂练习
9.已知等腰三角形的腰长比底边长多2cm,并且它的周长为16cm,求这个等腰三角形的各边长。
解:设三角形的底边长为xcm,则其腰长为 (x+2)cm,根据题意得:
2(x+2)+x=16
解得 x=4
∴等腰三角形三边长为4cm,6cm,6cm。
课堂练习
解 ∵AB=AC, BD=BC=AD,(已知)
∴∠ABC=∠C=∠BDC,
∠A=∠ABD.(等边对等角)
设∠A=x°,∵∠A+∠ABD+∠ADB=180°,
又∵∠BDC+∠ADB=180°,
∴∠BDC=∠A+∠ABD=2x°.
∵∠ABC=∠C=∠BDC=2x°,
∴x+2x+2x=180.(三角形内角和等于180°)
解得 x=36 .∴∠A=36°,∠C=72°.
10. 如图,在ΔABC中,AB=AC , 点D在AC上,且
BD=BC=AD , 求∠A和∠C的度数.
C
D
B
A
课堂练习
11.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
解:∵AB=AD=DC
∴ ∠B= ∠ADB,∠C= ∠DAC
设 ∠C=x,则 ∠DAC=x,
∠B= ∠ADB= ∠C+ ∠DAC=2x,
在△ABC中, 根据三角形内角和定理,得
2x+x+26°+x=180°,
解得x=38.5°.
∴ ∠C= x=38.5°, ∠B=2x=77°.
课堂练习
12.已知点D、E在△ABC的边BC上,AB=AC.
(1)如图①,若AD=AE,求证:BD=CE;
(2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.
图②
图①
课堂练习
证明:(1)如图①,过A作
AG⊥BC于G.
∵AB=AC,AD=AE,
∴BG=CG,DG=EG,
∴BG-DG=CG-EG,
∴BD=CE;
(2)∵BD=CE,F为DE的中点,
∴BD+DF=CE+EF,
∴BF=CF.
∵AB=AC,∴AF⊥BC.
图②
图①
G
课堂练习
方法总结:在等腰三角形有关计算或证明中,有时需要添加辅助线,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.
课堂练习
解:∵OA=AB,
∴∠ABO=∠O=15°,∴∠BAO=150°,
∴∠BAC=∠ABO+∠O=30°.
∵AB=BC,
∴∠ACB=∠BAC=30°,
∴∠CBO=135°,∴∠CBD=∠O+∠ACB=45°.
∵BC=CD,∴∠D=∠CBD=45°,∴∠BCD=90°,
∴∠1=180°-∠BCD-∠BCO=60°.
13.如图,∠AOB=15°,且OA=AB=BC=CD.求∠1的度数.
⌒
15°
1
C
D
B
O
A
⌒
课堂练习
14.如图,在ΔABC中,AB=AC,∠BAC=120°,点D, E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.
C
E
D
B
A
解 :∵AB=AC,∴∠B=∠C,
∴∠B=∠C=(180°-120°)÷2=30°.
又∵BD=AD,∴∠BAD=∠B=30°.
同理,∠CAE=∠C=30°.
∴∠DAE=∠BAC-∠BAD
-∠CAE=120°-30°-30°
=60°.
课堂练习
等腰三角形的性质
等腰三角形的两个底角相等(等边对等角).
等腰三角形的顶角平分线、底边上的中线和底边上的高重合(三线合一).
课堂小结
https://www.21cnjy.com/help/help_extract.php