1.4.1面积问题与平均增长率问题-2021-2022学年苏科版九年级数学上册培优训练(Word版 含答案)

文档属性

名称 1.4.1面积问题与平均增长率问题-2021-2022学年苏科版九年级数学上册培优训练(Word版 含答案)
格式 doc
文件大小 489.2KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2021-05-22 10:03:04

图片预览

文档简介

1.4.1面积问题与平均增长率问题-苏科版九年级数学上册 培优训练
一、选择题
1、一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是( )
A.10 B.12 C.13 D.14
2、某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为( )
A.200(1-x)2=162 B.200(1+x)2=162
C.162(1+x)2=200 D.162(1-x)2=200
3、国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得(  )
A. B. C. D.
4、我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是(??? ).
A.8% B.9% C.10% D.11%
5、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为(  )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
6、2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为(  )
A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5
C.2+2(1+x)+2(1+x)2=9.5 D.8+8(1+x)+8(1+x)2=9.5
7、在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )

A. B.
C. D.
8、某建筑工程队在工地一边靠墙处,用81米长的铁栅栏围成三个相连的长方形仓库,仓库总面积为440平方米. 为了方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门. 若设AB=x米,则可列方程( )

A.x(81-4x)=440 B.x(78-2x)=440 C.x(84-2x)=440 D.x(84-4x)=440
9、如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为(  )

A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32
C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32
10、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是(  )
A.8.5% B.9% C.9.5% D.10%
二、填空题
11、电影《中国机长》首映当日票房已经达到1.92亿元,2天后当日票房达到2.61亿元,设平均每天票房的增长率为x,则可列方程为 .
12、某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.
13、如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,若原正方形空地边长是xm,则可列方程为 .

14、国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.
15、现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是____m.

16、某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为_____.

17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.
18、某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:   .
三、解答题
19、如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?

20、据媒体报道,我国2017年公民出境旅游总人数5000万人次,2019年公民出境旅游总人数7200万人次,求这两年我国公民出境旅游总人数的年平均增长率是多少?
21、如图,要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m?,求与墙垂直的一边的长度.
22、习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆人次,进馆人次逐月增加,到第三个月末累计进馆人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不超过人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.
23、某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍.设B产品生产数量的增长率为x(x>0).
(1)用含有x的代数式填表(不需化简):
9月份生产数量 生产数量的增长率 10月份生产数量
产品A 200        
产品B 100 x    
(2)若9月份两种产品出厂单价的和为90元,10月份该工厂的总收入增加了4.4x,求x的值.
24、淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
1.4.1面积问题与平均增长率问题-苏科版九年级数学上册 培优训练(答案)
一、选择题
1、一块矩形菜地的面积是120平方米,如果它的长减少2米,菜地就变成正方形,则原菜地的长是( )
A.10 B.12 C.13 D.14
【答案】B
【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.
【解析】设原菜地的长为,则原矩形菜地的宽
由题意得:
解得:,(不合题意,舍去)
故选:B
2、某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为( )
A.200(1-x)2=162 B.200(1+x)2=162
C.162(1+x)2=200 D.162(1-x)2=200
【答案】A
【解析】因为销售单价原来为200元,而平均每次降价的百分率为x,
所以降一次后的售价为200(1-x)元,降两次后的售价为200(1-x)2元,
所以可列方程200(1﹣x)2=162,
故选A.
3、国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得(  )
A. B. C. D.
【答案】B
【分析】等量关系为:2016年贫困人口年贫困人口,把相关数值代入计算即可.
【解析】设这两年全省贫困人口的年平均下降率为,根据题意得:,
故选:B.
4、我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是(??? ).
A.8% B.9% C.10% D.11%
【答案】C
【解析】设平均每次下调的百分率为x,由题意,得
6000(1-x)2=4860,
解得:x1=0.1,x2=1.9(舍去).
答:平均每次下调的百分率为10%.
故选C.
5、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为(  )
A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100
【答案】A
【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.
【解析】由题意知,蔬菜产量的年平均增长率为x,
根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,
2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,
即: 80(1+x)2=100,
故选A.
6、2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x,根据题意,列出方程为(  )
A.2(1+x)2=9.5 B.2(1+x)+2(1+x)2=9.5
C.2+2(1+x)+2(1+x)2=9.5 D.8+8(1+x)+8(1+x)2=9.5
【答案】C
【分析】设每年市政府投资的增长率为x.根据到2012年底三年共累计投资9.5亿元人民币建设廉租房,列方程求解
【详解】(1)设每年市政府投资的增长率为x,
根据题意,得:2+2(1+x)+2(1+x)2=9.5.
故选:C.
7、在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )

A. B.
C. D.
【答案】B
【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
8、某建筑工程队在工地一边靠墙处,用81米长的铁栅栏围成三个相连的长方形仓库,仓库总面积为440平方米. 为了方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门. 若设AB=x米,则可列方程( )

A.x(81-4x)=440 B.x(78-2x)=440 C.x(84-2x)=440 D.x(84-4x)=440
【答案】D
【分析】仓库的宽为AB=x米,由铁栅栏的长度结合图形,可求出仓库的长为(84-2x),根据矩形的面积公式可列一元二次方程,再解出即可.
【详解】仓库的宽为AB=x米,则仓库的长为(84-4x)米,
根据题意可列方程x(84-4x)=440,
故选D.
9、如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为(  )

A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32
C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=32
【答案】B
【解析】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,
根据题意得:(10﹣2x)(6﹣2x)=32.
故选:B.
10、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元.则平均每次降低成本的百分率是(  )
A.8.5% B.9% C.9.5% D.10%
【答案】D
【解析】解:设平均每次降低成本的百分率为x,根据题意得100(1﹣x)(1﹣x)=81,
解得x=0.1或1.9(不合题意,舍去)
即x=10%
故选:D.
二、填空题
11、电影《中国机长》首映当日票房已经达到1.92亿元,2天后当日票房达到2.61亿元,设平均每天票房的增长率为x,则可列方程为 .
【答案】1.92(1+x)2=2.61.
【分析】根据增长率算出2天后的票房为1.92(1+x)2,由题目告知两天后的票房为2.61亿元,列出方程即可.
【解析】设平均每天票房的增长率为x,
根据题意得:1.92(1+x)2=2.61.
故答案为:1.92(1+x)2=2.61.
12、某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.
【答案】=31.5
【分析】根据题意,第一次降价后的售价为,
第二次降价后的售价为,据此列方程得解.
【解析】根据题意,得:=31.5
故答案为:=31.5.
13、如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,若原正方形空地边长是xm,则可列方程为 .

【答案】(x﹣3)(x﹣2)=20.
【分析】设原正方形的边长为xm,则剩余的空地长为(x﹣2)m,宽为(x﹣3)m.根据长方形的面积公式方程可列出.
【解析】解:设原正方形的边长为xm,依题意有
(x﹣3)(x﹣2)=20.故答案为(x﹣3)(x﹣2)=20.
14、国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________________.
【答案】10%
【分析】设平均每次降价的百分率为x,某种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,可列方程:60(1-x)2=48.6,由此求解即可.
【解析】设平均每次降价的百分率是x,
根据题意得:60(1-x)2=48.6,
解得:x1=0.1=10%,x2=1.9(不合题意,舍去).
答:平均每次降价的百分率是10%.
故答案为:10%.
15、现要在一个长为40m,宽为26m的矩形花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为864m2,那么小道的宽度应是____m.

【答案】2
【分析】根据图形可知剩余的长为(40-2x)m,剩余的宽为(26-x)m,然后根据矩形的面积公式列出方程即可.
【详解】解:设小道的宽为x米,依题意得
(40-2x)(26-x)=864,
解之得x1=44(舍去),x2=2.
故答案为:2.
16、某中学有一块长30m,宽20m的矩形空地,计划在这块空地上划分出四分之一的区域种花,小明同学设计方案如图所示,求花带的宽度.设花带的宽为xm,则可列方程为_____.

【答案】(30﹣2x)(20﹣x)=×20×30
【分析】根据剩余空白区域的面积=矩形空地的面积可得.
【解析】设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,
故答案为:(30﹣2x)(20﹣x)=×20×30.
17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多______步.
【答案】12
【分析】设长为x步,宽为 (60-x) 步,根据长方形的面积公式列出方程进行求解即可得.
【详解】设长为x步,宽为(60-x) 步,
x(60-x)=864 ,
解得,x1=36,x2=24(舍去),
∴当x=36 时,60-x=24 ,
∴长比宽多:36-24=12 (步),
故答案为:12.
18、某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:   .
【答案】50(1﹣x)(1﹣2x)=36
【解析】解:设第一次降价的百分率为x,则第二次降价的百分率为2x,
依题意,得:50(1﹣x)(1﹣2x)=36.
故答案为:50(1﹣x)(1﹣2x)=36.
三、解答题
19、如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?

【答案】羊圈的边长AB,BC分别是20米、20米.
分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.
【解析】设AB的长度为x米,则BC的长度为(100﹣4x)米.
根据题意得 (100﹣4x)x=400,
解得 x1=20,x2=5.
则100﹣4x=20或100﹣4x=80.
∵80>25, ∴x2=5舍去.
即AB=20,BC=20
20、据媒体报道,我国2017年公民出境旅游总人数5000万人次,2019年公民出境旅游总人数7200万人次,求这两年我国公民出境旅游总人数的年平均增长率是多少?
【答案】这两年我国公民出境旅游总人数的年平均增长率为
【分析】设这两年我国公民出境旅游总人数的年平均增长率为x,根据我国2017年及2019年公民出境旅游的人数,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解析】设这两年我国公民出境旅游总人数的年平均增长率为,
由题意得:,
解得:,(舍去)
答:这两年我国公民出境旅游总人数的年平均增长率为.
21、如图,要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m?,求与墙垂直的一边的长度.
【答案】:长10m,宽8m
【解析】①列写等量关系式:此题是围墙问题,围成了一个矩形图形,关系式为:长×宽=面积
②设未知数: ∵长、宽皆不知,面积已知且已知围成矩形三边的篱笆长35m
∴设宽为:xm,则开门一侧的宽需要篱笆:(x-1)m,
长为:[25-x-(x-1)]=(26-2x)m
③根据等量关系式列方程: 方程为:x(26-2x)=80
④求解方程: 化简得:,继续化简得:(2x-10)(x-8)=0
解得:,
⑤求位置数的取值范围
a.篱笆的长、宽必须为正数,即:
b.篱笆的长必须不长于墙,即:26-2x≤12
c.篱笆的侧面需要开门,必须宽于1m,即x>1
解不等式得:
⑥根据取值范围,确定答案
不满足,舍去 满足,成立
∴篱笆的宽为:8m,长为:26-2×8=10m。 答:略
22、习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆人次,进馆人次逐月增加,到第三个月末累计进馆人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不超过人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.
【答案】(1)进馆人次的月平均增长率为.(2)校图书馆能接纳第四个月的进馆人次.
【分析】(1)先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于,列方程求解;
(2)根据(1)所计算出的月平均增长率,计算出第四个月的进馆人次,再与比较大小即可.
【解析】(1)设进馆人次的月平均增长率为,则由题意得:
化简得:

或(舍)
答:进馆人次的月平均增长率为.
(2)∵进馆人次的月平均增长率为,
第四个月的进馆人次为:
答:校图书馆能接纳第四个月的进馆人次.
23、某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍.设B产品生产数量的增长率为x(x>0).
(1)用含有x的代数式填表(不需化简):
9月份生产数量 生产数量的增长率 10月份生产数量
产品A 200        
产品B 100 x    
(2)若9月份两种产品出厂单价的和为90元,10月份该工厂的总收入增加了4.4x,求x的值.
【答案】(1)2x;200(1+2x);100(1+x);(2)
【分析】(1)根据“10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍”填空;(2)根据(1)中相关量间的关系和9月份两种产品出厂单价的和为90元列出方程并解答.
【解析】(1)由题意,得:

故答案为:2x;200(1+2x);100(1+x);
(2)90×=60(元),90×=30(元)
  60×200(1+2x)2+30×100(1+x)(1+4x)=(60×200+30×100)(1+4.4x)
解得:x1=0(舍去),x2=.即x的值是.
24、淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A商品的成本为30元/件,网上标价为80元/件.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A商品吸引顾客,问该店平均每次降价率为多少时,才能使A商品的售价为39.2元/件?
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A商品的成本、网上标价与甲网店一致,一周可售出1000件A商品.在“双十一”购物活动当天,乙网店先将A商品的网上标价提高a%,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;
(2)乙网店在“双十一”购物活动这天的网上标价为100元.
【分析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【解析】(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣100(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=100.
答:乙网店在“双十一”购物活动这天的网上标价为100元.