2012年中考数学专题:数学应用题分析

文档属性

名称 2012年中考数学专题:数学应用题分析
格式 zip
文件大小 159.3KB
资源类型 教案
版本资源 新人教版
科目 数学
更新时间 2012-03-26 18:41:22

图片预览

文档简介

2012年中考专题:数学应用题分析
应用题源于生产、生活实践,是中考数学的常见题型.解题时,要求学生要熟悉其基本的生产、生活情景,善于积极地用数学观点和方法去解决实际问题.为了帮助初三年级同学系统地复习这一题型。归纳其类型与解法。
1.(函数应用型)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于340 元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
解:(1) y=50x (0x160,且x是10的整数倍)。
(2) W=(50x)(180x20)= x234x8000;
(3) W= x234x8000= (x170)210890,当x<170时,W随x增大而增大,但0x160,∴当x=160时,W最大=10880,当x=160时,y=50x=34。答:一天订住34个房间时, 宾馆每天利润最大,最大利润是10880元。
2.(方案设计型不等式解)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
解:设搭配A种造型x个,则B种造型为个,
依题意,得:解得:,∴
∵x是整数,x可取31、32、33,
∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.
(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)
方法二:方案①需成本:31×800+19×960=43040(元);
方案②需成本:32×800+18×960=42880(元);
方案③需成本:33×800+17×960=42720(元);∴应选择方案③,成本最低,最低成本为42720元.
3.(方案设计型与函数应用型综合)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台收割机派往A、B两地去收割小麦,其中30台派往A地区,20台派往B地区。这两地区与农机租赁公司商定的每天的租赁价格见下表:
(1)设派往A地区x台乙型联合收割机,农机租赁公司的这50台联合收割机一天获得的租金为y元,求y与x之间的函数关系式,并写出x的取值范围;
(2) 若使农机租赁公司的这50台联合收割机一天获得的租金总额不低于79600元,请问有多少种分派方案,并将各种方案设计出来;
(3) 如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议。
每台甲型收割机的租金 每台乙型收割机的租金
A地区 1800元 1600元
B地区 1600元 1200元
4.(方案设计不等式应用型)某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲和乙的含量如下表所示。现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶,设生产A种饮料x瓶,解答下列问题:
原料名称
饮料名称 甲 乙
A 20克 40克
B 30克 20克
(1)有几种符合题意的生产方案?写出解答过程; (2) 如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
5.(函数不等式型)国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式,月产量x(套)与生产总成本(万元)存在如图所示的函数关系.(1)直接写出与x之间的函数关系式;(2)求月产量x的范围;(3)当月产量x(套)为多少时,这种设备的利润W(万元)最大?最大利润是多少?
解:(1)
(2)依题意得:解得:25≤x≤40
(3)∵
∴ 而25<35<40, ∴当x=35时, 即,月产量为35件时,利润最大,最大利润是1950万元
6.(函数应用型)某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元,在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总支开),当销售单位x为何值时,年获利最大?并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?
解:(1)设y=kx+b,它过点(60,5),(80,4),
∴ 解得
∴y=-x+8.
(2)z=yx-40y-20=(-x+8)(x-40)-120=-x2+10x-440,
∴当x=100元时,最大年获利为60万元.
(3)令z=40,得4=-x2+10x-440,整理得:x2-200x+9600=0,解得:x1=80,x2=120.
由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间,又因为销售单价越低,销售量越大,所以要使销量最大,又要使年获利不低于40万元,销售单价应定为80元.
7.(方案型应用题)绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题意,得
4x + 2(8-x)≥20,且x + 2(8-x)≥12,
解此不等式组,得 x≥2,且 x≤4, 即 2≤x≤4.
∵ x是正整数, ∴ x可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案:
甲种货车 乙种货车
方案一 2辆 6辆
方案二 3辆 5辆
方案三 4辆 4辆
(2)方案一所需运费 300×2 + 240×6 = 2040元;
方案二所需运费 300×3 + 240×5 = 2100元;
方案三所需运费 300×4 + 240×4 = 2160元.
所以王灿应选择方案一运费最少,最少运费是2040元.
8.(方案设计型)迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?
解:设搭配A种造型x个,则B种造型为个,
依题意,得:解得:,∴
∵x是整数,x可取31、32、33,
∴可设计三种搭配方案:①A种园艺造型31个,B种园艺造型19个;②A种园艺造型32个,B种园艺造型18个;③A种园艺造型33个,B种园艺造型17个.
(2)方法一:由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:33×800+17×960=42720(元)
方法二:方案①需成本:31×800+19×960=43040(元);
方案②需成本:32×800+18×960=42880(元);
方案③需成本:33×800+17×960=42720(元);
∴应选择方案③,成本最低,最低成本为42720元.
9.(方案设计型 )为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
型号 占地面积(单位:m2/个 ) 使用农户数(单位:户/个) 造价(单位: 万元/个)
A 15 18 2
B 20 30 3
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.
(1)满足条件的方案共有几种 写出解答过程.(2)通过计算判断,哪种建造方案最省钱.
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个………1分
依题意得: …………………………………………3分
解得:7≤ x ≤ 9 ………………………………………………………………4分
∵ x为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60 ………………………………………………6分
∵-1< 0,∴y 随x 增大而减小,
当x=9 时,y的值最小,此时y= 51( 万元 ) …………………………………7分
∴此时方案为:建造A型沼气池9个,建造B型沼气池11个. ……………8分
解法②:由(1)知共有三种方案,其费用分别为:
方案一: 建造A型沼气池7个, 建造B型沼气池13个,
总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分
方案二: 建造A型沼气池8个, 建造B型沼气池12个,
总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分
方案三: 建造A型沼气池9个, 建造B型沼气池11个,
总费用为:9×2 + 11×3 = 51( 万元 )
∴方案三最省钱. …………………………………………… 8分
10.(方案设计函数应用型)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的
运费如表1:
(1)设甲地运往A馆的设备有x台,请填写表2,并求出总费用y(元)与x(台)的函数关系式;
(2)要使总费用不高于20200元,请你帮忙该公司设计调配方案,并写出有哪几种方案;
(3)当x为多少时,总运费最小,最小值是多少?
解:(1)表2如右图所示,依题意,得:
y=800x+700(18-x)+500(17-x)+600(x-3)
即:y=200x+19300(3≤x≤17)
(2)∵要使总运费不高于20200元
∴200x+19300<20200
解得:
∵3≤x≤17,且设备台数x只能取正整数
∴ x只能取3或4。
∴该公司的调配方案共有2种,具体如下表:
表3 表4
(3)由(1)和(2)可知,总运费y为:
y=200x+19300(x=3或x=4)
由一次函数的性质,可知:
当x=3时,总运费最小,最小值为:ymin=200×3+19300=19900(元)。
答:当x为3时,总运费最小,最小值是19900元。
11. (方程不等式方案设计型)某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.
【答案】(1)设甲工程队每天能铺设米,则乙工程队每天能铺设()米.
根据题意得:. 解得.
检验: 是原分式方程的解.
答:甲、乙工程队每天分别能铺设米和米.
(2)设分配给甲工程队米,则分配给乙工程队()米.
由题意,得解得. 所以分配方案有3种.
方案一:分配给甲工程队米,分配给乙工程队米;
方案二:分配给甲工程队米,分配给乙工程队米;
方案三:分配给甲工程队米,分配给乙工程队米
12.(函数不等式方案型)某公司有型产品40件,型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
型利润 型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店型产品件,这家公司卖出这100件产品的总利润为(元),求关于的函数关系式,并求出的取值范围;(3分)
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(4分)
(3)为了促销,公司决定仅对甲店型产品让利销售,每件让利元,但让利后型产品的每件利润仍高于甲店型产品的每件利润.甲店的型产品以及乙店的型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?(3分)
解:依题意,甲店型产品有件,乙店型有件,型有件,则
(1)

由解得.
(2)由,

,,39,40.
有三种不同的分配方案.
①时,甲店型38件,型32件,乙店型2件,型28件.
②时,甲店型39件,型31件,乙店型1件,型29件.
③时,甲店型40件,型30件,乙店型0件,型30件
(3)依题意: .
①当时,,即甲店型40件,型30件,乙店型0件,型30件,能使总利润达到最大.
②当时,,符合题意的各种方案,使总利润都一样.
③当时,,即甲店型10件,型60件,乙店型30件,型0件,能使总利润达到最大.
13.(函数方案型)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表
甲 乙 总计
A x 14
B 14
总计 15 13 28
⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨 千米)
【答案】⑴(从左至右,从上至下)14-x 15-x x-1
⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275
解不等式1≤x≤14
所以x=1时y取得最小值 ymin=1280
14.(分式方程型)某车间要生产220件产品,做完100件后改进了操作方法,每天多加工10件,最后总共用4天完成了任务.求改进操作方法后,每天生产多少件产品?
设改进操作方法后每天生产件产品,则改进前每天生产件产品.
答案:依题意有. 整理得.
解得或. 时,,舍去.

答:改进操作方法后每天生产60件产品.
15.(函数不等式方案型)绿谷商场“家电下乡”指定型号冰箱,彩电的进价和售价如下表所示:
类别 冰箱 彩电
进价(元/台) 2320 1900
售价(元/台) 2420 1980
按国家政策,农民购买“家电下乡”产品享受售价13℅的政府补贴。农民田大伯到该商场购买了冰箱,彩电各一台,可以享受多少元的补贴?
为满足农民需求,商场决定用不超过85000元采购冰箱,彩电共40台,且冰箱的数量不少于彩电数量的。
请你帮助该商场设计相应的进货方案;
用哪种方案商场获得利润最大?(利润=售价-进价),最大利润是多少?
解:(1)(2420+1980)×13℅=572,
(2)①设冰箱采购x台,则彩电采购(40-x)台,根据题意得
解不等式组得, 因为x为整数,所以x=19、20、21,
方案一:冰箱购买19台,彩电购买21台,方案二:冰箱购买20台,彩电购买20台,
方案一:冰箱购买21台,彩电购买19台,
设商场获得总利润为y元,则
Y=(2 420-2320)x+(1980-1900)(40-x)=20 x+3200
∵20>0, ∴y随x的增大而增大,
∴当x=21时,y最大=20×21+3200=3620.
16.(函数应用型)某企业信息部进行市场调研发现:
信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
x(万元) 1 2 2.5 3 5
yA(万元) 0.4 0.8 1 1.2 2
信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
(1)求出yB与x的函数关系式.
(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式.
(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
解:(1)yB=-0.2x2+1.6x,
(2)一次函数,yA=0.4x,
(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
∴当x=3时,W最大值=7.8,
答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润5.8万元.
17.(函数应用型)某通讯器材公司销售一种市场需求较大的新型通讯主产品,已知每件产品的进价为40元,每所销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量(万件)与销售单价(元)之间存在着如图2-3-2所示的一次函数关系.
(1)求与的函数关系式.
(2)试写出该公司销售该种产品的年获利(万元)关于销售单价(元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价为何值时,年获利最大?并求这个最大值.
(3)若公司希望该项种产品一年销售的获利不低于40万元,借助(2)中函数图象,请你帮助该公司确定销售单价的范围,在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?
(1)设,它经过点(60,5—)和(80,4).
∴,解得. ∴
(2)根据“年获利=年销售额-年销售产品总进价-年总开支”可得
∴当=100时,最大利润为60万元.
(3)令=40,则=40.解得.由图2-2-3可知,要使年获利不低于40万元,销售单价应在80元到120元之间.又因为销售单价越低,销售量越大,又要使年获利不低于40万元,销售单价应定为80元.
18.(几何应用型)图10—1是某学校存放学生自行车的车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图10—2是车棚顶部截面的示意图,所在圆的圆心为O.车棚顶部是用一种帆布覆盖的,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留).
连结OB,过点O作OE⊥AB,垂足为E,交于F,如图1.
由垂径定理,可知: E是AB中点,F是中点,
∴EF是弓形高 .
∴AE=2,EF=2.
设半径为R米,则OE=(R-2)米.
在Rt△AOE中,由勾股定理,得 R 2=.
解得 R =4. ∵sin∠AOE=, ∴ ∠AOE=60°,
∴∠AOB=120°. ∴ 的长为= ∴帆布的面积为×60=160(平方米)
19.(2011 泰安)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.
(1)当售价定为30元时,一个月可获利多少元?
(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?
分析:(1)当售价定为30元时,可知每一件赚10元钱,再有售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.可计算出一个月可获利多少元;
(2)设售价为每件x元时,一个月的获利为y元,得到y与x的二次函数关系式求出函数的最大值即可.
解答:解:(1)获利:(30﹣20)[105﹣5(30﹣25)]=800;
(2)设售价为每件x元时,一个月的获利为y元,
由题意,得y=(x﹣20)[105﹣5(x﹣25)]=﹣5x2+330x﹣4600=﹣5(x﹣33)2+845,
当x=33时,y的最大值为845,
故当售价定为33元时,一个月的利润最大,最大利润是845元.
80
60
40
20
0
6
5
4
3
2
1
x(元)
y(万件)
O
40
60
100
120
80
x(元)
y(万元)






甲 地 乙 地
A 馆 x(台) _______(台)
B 馆 _______(台) _______(台)
表2






甲 地 乙 地
A 馆 800元∕台 700元∕台
B 馆 500元∕台 600元∕台
表1






甲 地 乙 地
A 馆 x(台) _______(台)
B 馆 _______(台) _______(台)
表2
18-x
17-x x-3
甲 地 乙 地
A 馆 3台 15台
B 馆 14台 0台
甲 地 乙 地
A 馆 4台 14台
B 馆 13台 1台
调出地
水量/万吨
调入地
O
B
A
·
图10—2
图10—1
A
B
2米
4米
·
图1
E
F
O
B
A
同课章节目录