10.2事件的相互独立性 知识集锦+探究重点+即学即用-【新教材】2020-2021学年人教A版(2019)高中数学必修第二册讲义(机构)(含答案)

文档属性

名称 10.2事件的相互独立性 知识集锦+探究重点+即学即用-【新教材】2020-2021学年人教A版(2019)高中数学必修第二册讲义(机构)(含答案)
格式 docx
文件大小 191.8KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-05-25 10:13:57

图片预览

文档简介

事件的相互独立性
(1)定义:对任意两个事件A与B.如果P(AB)=P(A)P(B)成立,则称事件A与事件B相互独立,简称为独立.
(2)性质:如果事件A与事件B相互独立,那么A与,不与B,与B也相互独立
(3)"A与B相互独立"是“P(AB)=P(A)P(B)"的充要条件
(4)两个事件相互独立的概念也可以推广到有限个事件,即“相互独立”的充要条件是“其中任意有限个事件同时发生的概率都等于它们的概率之积”
相互独立事件与互斥事件的概率计算
已知两个事件A,B,它们的概率为P(A),P(B),将A,B中至少有一个发生记为事件AB,都发生记为事件AB,都不发生记为事件,恰有一个发生记为事件,至多有一个发生记为事件
概率
A,B互斥
A,B相互独立
P(A)+P(B)
1-P()P()
P(AB)
0
P(A)P(B)
P()
l-[P(A)+P(B)]
P()P()
P()
P(A)+P(B)
P(A)P()+P()P(B)
PABUABUAB)
1
1-P(A)P(B)
例1.甲?乙两队进行羽毛球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若甲队每局获胜的概率为,则甲队获得冠军的概率为(

A.
B.
C.
D.
【答案】B
【解析】由题意知:每局甲队获胜的概率为,乙队获胜的概率为,
∴至少在两局内甲队赢一局,甲队才能获得冠军,
当第一局甲队获胜,其概率为;
当第一局甲队输,第二局甲队赢,其概率为.
∴甲队获得冠军的概率为.
故选:B.
例2.某盒子里有若干个蓝色球、紫色球和黑色球,已知从盒中一次性取出3个球都是蓝色球的概率是,取出3个球都是紫色球的概率是,取出3个球都是黑色球的概率是,若从盒中任意取出3个球,则这3个球的颜色不全相同的概率是(

A.
B.
C.
D.
【答案】B
【解析】∵“3个球的颜色不全相同”的对立事件为“3个球恰好是同一颜色”,而任意取出3个球恰好是同一颜色的概率,
∴所求概率为.
故选:B.
1.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为(

A.0.015
B.0.005
C.0.985
D.0.995
2.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是(

A.0.16
B.0.24
C.0.96
D.0.04
3.如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是(

A.0.999
B.0.981
C.0.980
D.0.729
4.从装有2个红球和2个白球的口袋内任取2个球,互斥而不对立的两个事件是(

A.至少有1个白球;都是白球
B.至少有1个白球;至少有1个红球
C.恰有1个白球;恰有2个白球
D.至少有1个白球;都是红球
5.2020年,各国医疗科研机构都在积极研制“新冠”疫苗,现有A?B两个独立的医疗科研机构,它们能研制出疫苗的概率均为,则至少有一家机构能够研究出“新冠”疫苗的概率为(

A.
B.
C.
D.
6.抛掷一枚质地均匀的骰子,向上的一面出现任意一个点数的概率都是,记事件为“向上的点数是奇数”,事件为“向上的点数不超过3”,则概率(

A.
B.
C.
D.
7.某公司根据上年度业绩筛选出业绩出色的,,,四人,欲从此4人中选择1人晋升该公司某部门经理一职,现进入最后一个环节:,,,四人每人有1票,必须投给除自己以外的一个人,并且每个人投给其他任何一人的概率相同,则最终仅一人获得最高得票的概率为___________.
8.甲、乙两名乒乓球运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为,乙胜的概率为,如果比赛采用“五局三胜”制(先胜三局者获胜),则甲获胜的概率为______.
9.种植某种树苗,成活率为0.9,请采用随机模拟的方法估计该树苗种植5棵恰好4棵成活的概率.写出模拟试验的过程,并求出所求概率.
10.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A,乙对B,丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立,求红队至少两名队员获胜的概率.试卷第1页,总3页
1.D
【解析】设
“甲考生达标”
为事件A,
“乙考生达标”
为事件B,
“丙考生达标”
为事件C,则,,,,,,设
“三人中至少有一人达标”
为事件D

则,
故选:D.
2.C
【解析】至少有1人达标的对立事件是一个人也没达标,概率为,
所以三人中至少有一人达标的概率为.
故选:C
3.B
【解析】由题意,开关1、2在某段时间内均正常工作的概率,
开关3正常工作的概率,
故该系统正常工作的概率,
所以该系统的可靠性为.
故选:B.
4.C
【解析】至少有1个白球,都是白球,都是白球的情况两个都满足,故不是互斥事件;
至少有1个白球,至少有1个红球,一个白球一个红球都满足,故不是互斥事件;
恰有1个白球,恰有2个白球,是互斥事件不是对立事件;
至少有1个白球;都是红球,是互斥事件和对立事件.
故选:C
5.C
【解析】两家机构都不能够研究出“新冠”疫苗的概率为,
至少有一家机构能够研究出“新冠”疫苗的概率为,
故选:C.
6.C
【解析】解:∵抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是,
记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,
∴P(A)=,P(B)=,P(AB)=,
P(A)+P(B)?P(AB)=.
故选:C.
7.
【解析】随机事件的概率计算
由题意可知,每个人投给其他任何一人的概率相同,则最终仅一人获得最高得票有如下两种情况:①若得3票,其概率为;②若得2票,其概率为,所以最终仅一人获得最高得票的概率为..
故答案为:.
8.
【解析】“五局三胜”制,甲胜这个事件拆分成三个互斥事件:前三局甲全胜,前三局甲胜2局第四局甲胜,前4局甲胜2局第5局甲胜,
所以甲胜的概率为.
故答案为:.
9.过程见解析,0.3.
【解析】先由计算机随机函数RANDBETWEEN(0,9),或计算器的随机函数RANDI(0,9)产生0到9之间取整数值的随机数,指定1至9的数字代表成活,0代表不成活,再以每5个随机数为一组代表5次种植的结果,经随机模拟产生随机数,例如,如下30组随机数:
69801 66097 77124 22961 74235 31516
29747 24945 57558 65258 74130 23224
37445 44344 33315 27120 21782 58555
61017 45241 44134 92201 70362 83005
94976 56173 34783 16624 30344 01117
这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率近似为=0.3.
10.0.55.
【解析】记甲胜A、乙胜B、丙胜C分别为事件D,E,F,则甲不胜A、乙不胜B、丙不胜C分别为事件,,,根据各盘比赛结果相互独立,可得红队至少两名队员获胜的概率为
.