第5课时 0×5=?
课时目标导航
一、教学内容
一个乘数中间或末尾有0的乘法。(教材第60页)
二、教学目标
1.探索并掌握“0乘任何数都得0”和“0加任何数都得原数”的规律。
2.掌握一个乘数中间或末尾有0的乘法的计算方法。
3.经历与他人交流各自算法的过程,进一步学会表达自己的想法。
三、重点难点
重点:“0乘任何数都得0”的规律。
难点:掌握一个乘数中间或末尾有0的乘法的计算方法。
教学过程
一、复习引入
口算。
12×3= 14×2= 16×3=
123×3= 12+0= 0+16=
40-0= 54-54=
师:后4个算式与什么特殊数有关?说一说你的发现。(点名学生回答)
师:如果一个乘数中间或末尾有0,我们应该怎样列竖式计算呢?今天,我们就来学习这部分内容。(板书课题)
二、 学习新课
1.教学0乘任何数都得0的规律。
(课件出示教材第60页第1问)
师:0乘5等于多少?说说你是怎么想的。(学生相互讨论,交流计算方法)
教师先在讲台上放5堆粉笔,每堆粉笔3支。
师:这里一共有多少支粉笔?请同学们分别用加法和乘法计算。(点名学生回答)
加法:3+3+3+3+3=15 乘法:3×5=15
点名学生说一说3×5表示的意义。
教师从每堆粉笔中拿走一支,继续上面的提问,然后再拿走一支,重复上面的提问,直到每堆中一支粉笔也没有。
师:现在还有多少支粉笔?如何用加法和乘法计算?(点名学生回答)
加法:0+0+0+0+0=0 乘法:0×5=0
师:根据0×5=0,大家想一想0×6,0×7,0×8,0×9分别得多少。
学生独立计算,相互交流。
师:你发现了什么?(点名学生回答)
根据学生的回答,教师板书:0乘任何数都得0。
2.教学一个乘数中间或末尾有0的计算方法。
(课件出示教材第60页第2问)
师:这里有4道与0有关的算式,同学们观察一下,它们各自有什么特点?
组织学生先观察算式的特点,发现前两个算式都有一个乘数末尾有0,后两个算式都有一个乘数中间有0。(课件出示)
学生独立计算。
点名学生板演,并说明计算过程,集体订正。
根据学生的板书,教师板书另一种竖式计算方法,并进行讲解。
引导学生可以把240看成24个十,240乘2表示24个十乘2,就是48个十,也就是480。因此列竖式计算时,可以把2与240十位上的4对齐,24×2=48,然后把240个位上的0移下来,写在积的个位上,得到480。
组织学生按上面的方法笔算130×5。(教师巡视指导)
教师小结:如果一个乘数的末尾有0,先把0前面的数与另一个乘数相乘,再看这个乘数后面有几个0,就在积的末尾添上几个0。(课件出示小结)
师:一个乘数的十位是0,乘积的十位一定也是0吗?(小组交流讨论,点名小组代表回答)
教师板书竖式:
师:有0的乘法竖式中,计算时应该注意什么?(小组交流讨论,点名小组代表回答)
教师小结:乘数末尾有0的竖式,不要忘记加上末尾的0;乘数中间有0的竖式,如果有进位,要加上进上来的数。(课件出示小结)
3.0与任何数的乘法和加法。
(课件出示教材第60页第3问)
引导学生观察发现每道算式中都有0,其中第1、2、4道算式是关于0的乘法算式,其余3道算式是关于0的加法算式。
组织学生独立计算,点名学生汇报答案,并根据计算结果,说一说发现了什么,集体订正。
根据学生的回答,教师小结:0乘任何数都得0,0加任何数都得这个数。(课件出示小结)
三、巩固练习
1.完成教材第61页“练一练”第1、2题。(点名学生回答第1题,点名学生板演第2题,集体订正)
第1题:略
第2题:(竖排) 1280 1208 1510 1600 315 450 820 1000(竖式略)
2.完成教材第61页“练一练”第3、5题。(点名学生板演,其余独立完成,集体订正)
第3题:(1)150×2=300(米)
(2)150+180×2=510(米)
第5题:(1)280-67×3=79(个)
(2)(方法一)105×3+95=410(个)
(方法二)105×2+(105+95)=410(个)
3.完成教材第61页“练一练”第4题。(点名学生回答,并说明比较方法,引导学生用估算解决)
> < < =
四、 课堂小结
这节课我们学习了什么知识?有什么收获和感受?
0×5=?
0乘任何数都得0。
1.课堂教学的设计应关注学生已有的知识经验,根据教材,创设具有一定挑战性的情境,让学生合作交流,这样才能调动学生的积极性,给提出问题和解决问题增添浓厚的兴趣。
2.学习的过程是自我建构、自我生成的过程。教学活动必须尊重学生已有的知识和经验,由此出发,让学生学习数学、理解数学。本节课教师引导学生借助“找规律”“乘法的意义”等已有的知识和经验自己探索,从而发现“0和任何数相乘都得0”。
3.我的补充:
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
备课资料参考
【例题】育红小学图书室有连环画240本,故事书比连环画的本数多2倍,科技书是故事书本数的2倍。科技书有多少本?
分析:根据题意,画出如下线段图:
由上图可知,故事书的本数=连环画的本数×(2+1),科技书的本数=故事书的本数×2,由此求解。
解答:240×(2+1)=720(本)
720×2=1440(本)
答:科技书有1440本。
解法归纳:解此类题时,可以借助线段图理解题意,从而解决问题。
0的性质
在小学数学教材中,有关“0”的性质分散在各部分内容里。现集中起来,简述如下:
(1) 0是一个数,并且是一个整数。
(2)在十进制计数法中,0起占位的作用。
(3)0是一个偶数。
(4) 0是任意自然数的倍数。
(5)任何数与0相加都得原数,即?a+0=0+a=a。
(6)任何数减0,都得原数,即a-0=a。
(7)相同的两个数相减,差等于0,即a-a=0。
(8)任何数与 0相乘,积都等于 0,即a×0=0×a=0。
(9)0除以任何非零的数,商都等于0,即如果 a≠0,那么0÷a=0。?
(10)0不能作除数。例如:3÷0,0÷0,这类式子是没有意义的。
随着数学知识的扩充,0的性质也得到进一步扩充。比如,当引进负数之后,0是唯一的中性数,既不是正数,也不是负数;引入绝对值的概念后,0的绝对值等于0,即|0|=0;引入指数概念后,任何非零的数的 0次幂等于1,即如果 ?a≠0,那么a0=1等等。?