2021年鲁教版八年级数学下册《9.4探索三角形相似的条件》同步专题提升训练(附答案)
1.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )
A.∠ABP=∠C B.∠APB=∠ABC C.= D.=
2.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B.
C. D.
3.如图,在大小为4×4的正方形网格中,是相似三角形的是( )
A.①和② B.②和③ C.①和③ D.②和④
4.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△A1B1C1相似的是( )
A.B. C.D.
5.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的( )
A.= B.= C.= D.=
6.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 .
7.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN= .
8.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为 时,△ADP和△ABC相似.
9.如图所示,在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A、P、Q为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ的长为 .
10.如图,点D为△ABC外一点,AD与BC边的交点为E,AE=3,DE=5,BE=4,要使△BDE∽△ACE,且点B,D的对应点为A,C,那么线段CE的长应等于 .
11.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有 条.
12.如图,在四边形ABCD中,AD∥BC,AD<BC,∠ABC=90°,且AB=3,点E是边AB上的动点,当△ADE,△BCE,△CDE两两相似时,则AE= .
13.如图∠DAB=∠CAE,请补充一个条件: ,使△ABC∽△ADE.
14.如图,Rt△ABC中,∠ACB=90°,AC=9,BC=12,D是AB边的中点,P是BC边上一动点(点P不与B、C重合),若以D、C、P为顶点的三角形与△ABC相似,则线段PC= .
15.如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为 时,△BOC与△AOB相似.
16.如图所示,D,E分别在△ABC的边AB、AC上,DE与BC不平行,当满足 条件时,有△ABC∽△AED.
17.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:
①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为 .
18.如图,在三角形ABC中,AB=6cm,AC=12cm.点P从A沿AB以1厘米/秒的速度移动,点Q从C沿CA以2厘米/秒的速度向A移动.如果两点同时出发,经过 秒后,△APQ与△ABC相似.
19.如图,点P是△ABC中AB边上的一点,请你添加一个条件使△ACP∽△ABC: .
20.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
21.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC= ,BC= ;
(2)判断△ABC与△DEF是否相似?并证明你的结论.
如图,在△ABC中,∠ACB=90°,CD⊥AB,
(1)图1中共有 对相似三角形,写出来分别为 (不需证明);
(2)已知AB=10,AC=8,请你求出CD的长;
(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒,是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
23.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
(1)用含t的代数式表示:AP= ,AQ= .
(2)当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
24.如图,在?ABCD中,E是DC上一点,连接AE.F为AE上一点,且∠BFE=∠C
求证:△ABF∽△EAD.
25.如图,AB?AE=AD?AC,且∠1=∠2,求证:△ABC∽△ADE.
26.如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
27.已知,如图,==,那么△ABD与△BCE相似吗?为什么?
参考答案
1.解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项不符合题意;
B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项不符合题意;
C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项不符合题意;
D、无法得到△ABP∽△ACB,故此选项符合题意.
故选:D.
2.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;
故选:C.
3.解:①和③相似,
∵由勾股定理求出①的三角形的各边长分别为2、、;
由勾股定理求出③的各边长分别为2、2、2,
∴=,
=,
即==,
∴两三角形的三边对应边成比例,
∴①③相似.
故选:C.
4.解:因为△A1B1C1中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,
故选:B.
5.解:∵∠BAC=∠D,,
∴△ABC∽△DEA.故选:C.
6.解:延长CB到E,使EB=CB,连接DE交AB于P.则DE就是PC+PD的和的最小值.
∵AD∥BE,
∴∠A=∠PBE,∠ADP=∠E,
∴△ADP∽△BEP,
∴AP:BP=AD:BE=4:6=2:3,
∴PB=PA,
又∵PA+PB=AB=5,
∴PB=AB=3.
故答案为:3
7.解:如图1,当MN∥BC时,
则△AMN∽△ABC,
故==,
则=,
解得:MN=4,
如图2所示:当∠ANM=∠B时,
又∵∠A=∠A,
∴△ANM∽△ABC,
∴=,
即=,
解得:MN=6,
故答案为:4或6.
8.解:当△ADP∽△ACB时,
∴=,
∴=,
解得:AP=9,
当△ADP∽△ABC时,
∴=,
∴=,
解得:AP=4,
∴当AP的长度为4或9时,△ADP和△ABC相似.
故答案为:4或9.
9.解:∵AC=4,P是AC的中点,
∴AP=AC=2,
①若△APQ∽△ACB,则,
即,
解得:AQ=3;
②若△APQ∽△ABC,则,
即,
解得:AQ=;
∴AQ的长为3或.
故答案为:3或.
10.解:∵∠AEC=∠BED,
∴当=时,△BDE∽△ACE,
即=,
∴CE=.
故答案为.
11.解:由于△ABC是直角三角形,
过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,
所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,
过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.
故答案为:3.
12.解:分两种情况:
①当∠CED=90°时,如图1,
过E作EF⊥CD于F,
∵AD∥BC,AD<BC,
∴AB与CD不平行,
∴当△ADE、△BCE、△CDE两两相似时,
∴∠BEC=∠CDE=∠ADE,
∵∠A=∠B=∠CED=90°,
∴∠BCE=∠DCE,
∴AE=EF,EF=BE,
∴AE=BE=AB=,
②当∠CDE=90°时,如图2,
∵当△ADE、△BCE、△CDE两两相似时,
∴∠CEB=∠CED=∠AED=60°,
∴∠BCE=∠DCE=30°,
∵∠A=∠B=90°,
∴BE=ED=2AE,
∵AB=3,
∴AE=1,
综上,AE的值为或1.
故答案为:或1.
13.解:∵∠DAB=∠CAE
∴∠DAE=∠BAC
∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE时两三角形相似.
故答案为:∠D=∠B(答案不唯一).
14.解:∵Rt△ABC中,∠ACB=90°,AC=9,BC=12,
∴AB=15,
∵D是AB边的中点,
∴CD=BD=AB=7.5,
∵以D、C、P为顶点的三角形与△ABC相似,
∴∠DPC=90°或∠CDP=90°,
(1)若∠DPC=90°,则DP∥AC,
∴==,
∴BP=BC=6,
则PC=6;
(2)若∠CDP=90°,则△CDP∽△BCA,
∴=,
即=,
∴PC=.
综上所述:PC=6或.
故答案为:6或.
15.解:∵点C在x轴上,
∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,
若OC与OA对应,则OC=OA=6,C(﹣6,0);
若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).
∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).
故答案为:(﹣1.5,0),(1.5,0),(﹣6,0).
16.解:∵DE与BC不平行,
∴∠D≠∠B,
而∠DAE=∠CAB,
∴当∠ADE=∠C或∠AED=∠B时,△ABC∽△AED.
当=时,△ABC∽△AED.
故答案为:∠ADE=∠C或∠AED=∠B或=.
17.解:由旋转的性质可知AC1=AC,
∴△AC1C为等腰三角形,即①正确;
∵∠ACB=30°,
∴∠C1=∠ACB1=30°,
又∵B1AC1=∠BAC=45°,
∴∠AB1C=75°,
∴∠CAB1=180°﹣75°﹣30°=75°,
∴CA=CB1;
∴②正确;
∵∠CAC1=∠CAB1+∠B1AC1=120°,
∴旋转角α=120°,故③错误;
∵∠BAC=45°,
∴∠BAB1=45°+75°=120°,
∵AB=AB1,
∴∠AB1B=∠ABD=30°,
在△AB1D与△BCD中,
∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,
∴△AB1D∽△ACB1,即④正确;
在△ABD与△B1CD中,
∵∠ABD=∠ACB1,∠ADB=∠CDB1,
∴△ABD∽△B1CD,
∴=,
如图,过点D作DM⊥B1C,
设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,
∴AC=B1C=(+1)x,
∴AD=AC﹣CD=(﹣1)x,
∴===,即⑤正确.
故答案为:①②④⑤.
18.解:由题意AP=t,CQ=2t,
∵AC=12cm,
∴AQ=(12﹣2t)cm,
当=时,△APQ∽△ABC,
∴=,
解得t=3.
当=时,△APQ∽△ACB,
∴=,
解得t=,
故答案为3或.
19.解:∵∠PAC=∠CAB,
∴当∠ACP=∠B时,△ACP∽△ABC;
当=时,△ACP∽△ABC.
故答案为:∠ACP=∠B(或=).
20.(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90°,
∵AE=ED,
∴,
∵DF=DC,
∴,
∴,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴,
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
∴BG=BC+CG=10.
21.(1)解:∠ABC=90°+45°=135°,
BC===2;
故答案为:135°;2.
(2)△ABC∽△DEF.
证明:∵在4×4的正方形方格中,
∠ABC=135°,∠DEF=90°+45°=135°,
∴∠ABC=∠DEF.
∵AB=2,BC=2,FE=2,DE=
∴==,==.
∴△ABC∽△DEF.
22.解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD.
故答案为3,△ABC∽△ACD,△ABC∽△CBD,△ACD∽△CBD;
(2)如图1,在△ABC中,∵∠ACB=90°,AB=10,AC=8,
∴BC==6.
∵△ABC的面积=AB?CD=AC?BC,
∴CD===4.8;
(3)存在点P,使以点B、P、Q为顶点的三角形与△ABC相似,理由如下:
在△BOC中,∵∠COB=90°,BC=6,OC=4.8,
∴OB==3.6.
分两种情况:
①当∠BQP=90°时,如图2①,此时△PQB∽△ACB,
∴=,
∴=,
解得t=2.25,即BQ=CP=2.25,
∴BP=BC﹣CP=6﹣2.25=3.75.
在△BPQ中,由勾股定理,得PQ===3,
∴点P的坐标为(1.35,3);
②当∠BPQ=90°时,如图2②,此时△QPB∽△ACB,
∴=,
∴=,
解得t=3.75,即BQ=CP=3.75,BP=BC﹣CP=6﹣3.75=2.25.
过点P作PE⊥x轴于点E.
∵△QPB∽△ACB,
∴=,即=,
∴PE=1.8.
在△BPE中,BE===1.35,
∴OE=OB﹣BE=3.6﹣1.35=2.25,
∴点P的坐标为(2.25,1.8).
综上可得,点P的坐标为(1.35,3)或(2.25,1.8).
23.解:(1)AP=2t,AQ=16﹣3t.
(2)∵∠PAQ=∠BAC,
∴当=时,△APQ∽△ABC,即=,解得t=;
当=时,△APQ∽△ACB,即=,解得t=4.
∴运动时间为秒或4秒.
24.证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AD∥BC,
∴∠D+∠C=180°.
∵∠AFB+∠BFE=180°且∠BFE=∠C.
∴∠D=∠AFB.
∵AB∥CD,
∴∠BAE=∠AED,
∴△ABF∽△EAD.
25.证明:如图,∵AB?AE=AD?AC,
∴=.
又∵∠1=∠2,
∴∠2+∠BAE=∠1+∠BAE,即∠BAC=∠DAE,
∴△ABC∽△AED.
26.解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G
如图
∴DF∥AG,=
∵AB=AC=10,BC=16∴BG=8,∴AG=6.
∵AD=BE=t,∴BD=10﹣t,
∴=
解得DF=(10﹣t)
∵S△BDE=BE?DF=7.5
∴(10﹣t)?t=15
解得t=5.
答:t为5秒时,△BDE的面积为7.5cm2.
(2)存在.理由如下:
①当BE=DE时,△BDE∽△BCA,
∴=即=,
解得t=,
②当BD=DE时,△BDE∽△BAC,
=即=,
解得t=.
答:存在时间t为或秒时,使得△BDE与△ABC相似.
27.解:∵==,
∴△ABC∽△DBE,
∴∠ABC=∠DBE,
∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,
即∠ABD=∠CBE,
∵=,
∴=,
∴△ABD∽△CBE.