2021学年北师大版八年级数学下册《5.4分式方程》期末复习专题提升训练(附答案)
1.下列方程中,是分式方程的是( )
A.+=1 B.x+=2 C.2x=x﹣5 D.x﹣4y=1
2.在下列方程中,( )是分式方程.
A.=1 B.
C. D.
3.下列关于x的方程中,是分式方程的是( )
A.﹣3= B.﹣﹣
C.=3﹣x D.=1
4.若关于x的分式方程无解,则m的值为( )
A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5
5.若关于x的方程+=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
6.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是( )
A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4
7.解分式方程+=3时,去分母后变形为( )
A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1)
C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)
8.已知实数x满足x2++x﹣=4,则x﹣的值是( )
A.﹣2 B.1 C.﹣1或2 D.﹣2或1
9.用换元法解方程时,设x+=y,则原方程可化为( )
A.y2﹣2y﹣3=0 B.y2﹣2y﹣1=0 C.y2﹣y﹣1=0 D.y2﹣2y+3=0
10.若关于x的分式方程﹣1=有增根,则a的值为( )
A.﹣3 B.3 C.2 D.﹣
11.分式方程=有增根,则m的值为( )
A.0和3 B.1 C.1和﹣2 D.3
12.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x株,则符合题意的方程是( )
A.3(x﹣1)= B.=3
C.3x﹣1= D.=3
13.甲、乙两人同时从A地出发,骑自行车行30千米到B地,甲比乙每小时少走3千米,结果乙先到40分钟,若设乙每小时走x千米,则可列方程( )
A.﹣=40 B.﹣=40
C.﹣= D.﹣=
14.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )
A. B.
C.+4=9 D.
15.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为( )
A. B.
C. D.
16.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )
A.﹣=20 B.﹣=20
C.﹣=20 D.+=20
17.若关于x的方程=+1无解,则a的值是 .
18.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是 .
19.用换元法解方程时,可设,则原方程可化为关于y的整式方程为 .
20.若关于x的方程=﹣2有增根,则m的值是 .
21.小明上周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x袋牛奶,则根据题意列得方程为 .
22.解分式方程:.
23.解方程:=﹣1.
24.解分式方程:=﹣.
25.解分式方程:﹣1=.
26.已知关于x的分式方程+=
(1)若方程的增根为x=1,求m的值
(2)若方程有增根,求m的值
(3)若方程无解,求m的值.
27.阅读下面材料,解答后面的问题
解方程:﹣=0.
解:设y=,则原方程化为:y﹣=0,
方程两边同时乘以y得:y2﹣4=0,解得:y=±2,
经检验:y=±2都是方程y﹣=0的解,
∴当y=2时,=2,解得:x=﹣1;当y=﹣2时,=﹣2,解得:x=,
经检验:x=﹣1或x=都是原分式方程的解,
∴原分式方程的解为x=﹣1或 x=.
上述这种解分式方程的方法称为换元法.
问题:(1)若在方程﹣=0中,设y=,则原方程可化为: ;
(2)模仿上述换元法解方程:﹣﹣1=0.
28.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且乙厂单独完成60万只口罩的生产比甲厂单独完成多用5天.
(1)求甲、乙厂每天分别可以生产多少万只口罩?
(2)该地委托甲、乙两厂尽快完成100万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?
29.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.
30.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?
31.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
32.某中学准备改造面积为1080m2的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队每天比甲工程队多改造10m2;甲工程队每天所需费用160元,乙工程队每天所需费用200元.
(1)求甲乙两个工程队每天各改造操场多少平方米?
(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校负担他每天25元的生活补助费,现有以下三种方案供选择.
第一种方案:由甲单独改造;
第二种方案:由乙单独改造;
第三种方案:由甲、乙一起同时进行改造;
你认为哪一种方案既省时又省钱?试比较说明.
33.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
A,B两种型号车的进货和销售价格表:
A型车 B型车
进货价格(元/辆) 1100 1400
销售价格(元/辆) 今年的销售价格 2400
(1)求今年6月份A型车每辆销售价多少元;
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
参考答案
1.解:A、该方程是一元一次方程,故本选项不符合题意;
B、该方程符合分式方程的定义,故本选项符合题意;
C、该方程是一元一次方程,故本选项不符合题意;
D、该方程是二元一次方程,故本选项不符合题意;
故选:B.
2.解:A、是分式方程,故此选项符合题意;
B、不是分式方程,是整式方程,故此选项不符合题意;
C、不是分式方程,故此选项不符合题意;
D、不是分式方程,是整式方程,故此选项不符合题意;
故选:A.
3.解:A、C选项项中的方程分母中不含未知数,故不是分式方程;
B选项不是方程.
D选项中的方程分母中含未知数x,故是分式方程,
故选:D.
4.解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),
即(2m+1)x=﹣6,
分两种情况考虑:
①∵当2m+1=0时,此方程无解,
∴此时m=﹣0.5,
②∵关于x的分式方程无解,
∴x=0或x﹣3=0,
即x=0,x=3,
当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),
解得:此方程无解;
当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),
解得:m=﹣1.5,
∴m的值是﹣0.5或﹣1.5,
故选:D.
5.解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,
解得:x=,
∵关于x的方程+=3的解为正数,
∴﹣2m+9>0,
解得:m<,
当x=3时,x==3,
解得:m=,
故m的取值范围是:m<且m≠.
故选:B.
6.解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,
解得:a=4或a=﹣1,
经检验a=4是增根,故分式方程的解为a=﹣1,
已知不等式组解得:﹣1<x≤b,
∵不等式组只有4个整数解,
∴3≤b<4.
故选:D.
7.解:方程两边都乘以x﹣1,
得:2﹣(x+2)=3(x﹣1).
故选:D.
8.解:x2+﹣2+x﹣﹣2=0
∴(x﹣)2+(x﹣)﹣2=0
解得x﹣=﹣2或1.
经检验,x﹣=1和x﹣=﹣2均有实数根.
所以x﹣=﹣2或1.
故选:D.
9.解:设x+=y,则有:,所以,
所以方程变形为y2﹣2y﹣3=0,
故选:A.
10.解:方程两边都乘以(x﹣2)得:6﹣(x﹣2)=﹣ax,
解得:x=,
∵方程有增根,
∴x﹣2=0,
∴x=2,
∴=2,
解得:a=﹣3.
故选:A.
11.解:∵分式方程=有增根,
∴x﹣1=0,x+2=0,
∴x1=1,x2=﹣2.
两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,
整理得,m=x+2,
当x=1时,代入得:m=1+2=3,
当x=﹣2时,代入得:m=﹣2+2=0,
当m=0时,方程为﹣1=0,此时方程无解,
所以m=3,
故选:D.
12.解:依题意,得:3(x﹣1)=.
故选:A.
13.解:设乙每小时走x千米,则甲每小时走(x﹣3)千米,
依题意得:﹣=.
故选:C.
14.解:顺流时间为:;逆流时间为:.
所列方程为:+=9.
故选:A.
15.解:设实际参加游览的同学共x人,
根据题意得:﹣=3.
故选:D.
16.解:设原计划每亩平均产量x万千克,由题意得:
﹣=20,
故选:A.
17.解:x﹣2=0,解得:x=2.
方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2
当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,
解得:a=2.
当a﹣1=0,即a=1时,原方程无解.
故答案是:2或1.
18.解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,
去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,
移项合并得:x=1﹣2k,
根据题意得:1﹣2k<0,且1﹣2k≠±1
解得:k>且k≠1
故答案为:k>且k≠1.
19.解:∵,
∴y++2=0,
整理得:y2+2y+1=0.
故答案为:y2+2y+1=0.
20.解:去分母得:m=x﹣1﹣2(x﹣3).
∴m=﹣x+5.
∵方程有增根.
∴x﹣3=0.
∴x=3.
∴m=﹣3+5=2.
故答案为:2.
21.解:周三买的牛奶的单价为:,周日买的牛奶的单价为:.所列方程为:.
22.解:方程两边都乘以x(x﹣1)得:x(x﹣5)+2(x﹣1)=x(x﹣1),
解得:x=﹣1,
检验:当x=﹣1时,x(x﹣1)≠0,
所以x=﹣1是原方程的解,
即原方程的解是x=﹣1.
23.解:化为整式方程得:2﹣2x=x﹣2x+4,
解得:x=﹣2,
把x=﹣2代入原分式方程中,等式两边相等,
经检验x=﹣2是分式方程的解.
24.解:原方程即=﹣,
两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),
x+1=6x﹣3﹣4x﹣2,
解得:x=6.
经检验:x=6是原分式方程的解.
∴原方程的解是x=6.
25.解:方程两边同时乘以(x+2)(x﹣2)得:
(x﹣2)2﹣(x+2)(x﹣2)=16
解得:x=﹣2,
检验:当x=﹣2时,(x+2)(x﹣2)=0,
∴x=﹣2是原方程的增根,原方程无解.
26.解:方程两边同时乘以(x+2)(x﹣1),
去分母并整理得:2(x+2)+mx=x﹣1,
移项合并得:(m+1)x=﹣5,
(1)∵x=1是分式方程的增根,
∴1+m=﹣5,
解得:m=﹣6;
(2)∵原分式方程有增根,
∴(x+2)(x﹣1)=0,
解得:x=﹣2或x=1,
当x=﹣2时,m=1.5;当x=1时,m=﹣6;
(3)当m+1=0时,该方程无解,此时m=﹣1;
当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,
综上,m的值为﹣1或﹣6或1.5.
27.解:(1)y﹣=0;
(2)原方程化为:﹣=0,
设y=,则原方程化为:y﹣=0,
方程两边同时乘以y得:y2﹣1=0,解得:y=±1,
经检验:y=±1都是方程y﹣=0的解.
当y=1时,=1,该方程无解;
当y=﹣1时,=﹣1,解得:x=﹣.
经检验:x=﹣是原分式方程的解,
∴原分式方程的解为x=﹣.
28.解:(1)设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,
依题意,得:﹣=5,
解得:x=4,
经检验,x=4是原方程的解,且符合题意,
∴甲厂每天可以生产口罩:1.5×4(万只).
答:甲厂每天能生产口罩6万只,乙厂每天能生产口罩4万只.
(2)设应安排两个工厂工作y天才能完成任务,
依题意,得:(6+4)y≥100,
解得:y≥10.
答:至少应安排两个工厂工作10天才能完成任务.
29.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x天.根据题意,得 .
解得 x=90.
经检验,x=90是原方程的根.
∴x=×90=60.
答:甲、乙两队单独完成这项工程分别需60天和90天.
(2)设甲、乙两队合作完成这项工程需要y天,
则有 .
解得 y=36.
需要施工费用:36×(8.4+5.6)=504(万元).
∵504>500.
∴工程预算的施工费用不够用,需追加预算4万元.
30.解:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫是2x件,依题意有
+10=,
解得x=120,
经检验,x=120是原方程的解,且符合题意.
答:该商家购进的第一批衬衫是120件.
(2)3x=3×120=360,
设每件衬衫的标价y元,依题意有
(360﹣50)y+50×0.8y≥(13200+28800)×(1+25%),
解得y≥150.
答:每件衬衫的标价至少是150元.
31.解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=9.
经检验,m=9是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价9万元;
(2)设购进A款汽车x辆.则:
99≤7.5x+6(15﹣x)≤105.
解得:6≤x≤10.
∵x的正整数解为6,7,8,9,10,
∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车y辆,则:
W=(9﹣7.5)y+(8﹣6﹣a)(15﹣y)=(a﹣0.5)y+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.
32.解:(1)设甲乙两个工程队每天各改造操场x,y平方米,
则
解得x=30,y=40
答:甲乙两个工程队每天各改造操场30平方米和40平方米.
(2)由甲单独改造=6660元;
由乙单独改造=6075元;
由甲、乙一起同时进行改造=5940元.
所以,甲乙合作最省钱.
33.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,
根据题意得=,
解得:x=1600,
经检验,x=1600是方程的解.
x=1600时,x+400═2000.
答:今年6月份A型车每辆销售价2000元.
(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,
根据题意得50﹣m≤2m,
解得:m≥16,
∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,
∴y随m 的增大而减小,
∴当m=17时,可以获得最大利润.
答:进货方案是A型车17辆,B型车33辆.