人教版八年级数学上册第十二章 全等三角形知识点归纳及练习(无答案)

文档属性

名称 人教版八年级数学上册第十二章 全等三角形知识点归纳及练习(无答案)
格式 docx
文件大小 765.6KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-06-11 11:47:29

图片预览

文档简介

八年级数学三角形和全等三角形知识点归纳及练习
考点一 全等三角形的概念与性质
1.概念:能够重合的两个三角形叫做全等三角形.
温馨提示:
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.如右图,△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,记作△ABC≌△DBC.
2.全等三角形的性质
(1)全等三角形的对应边相等,对应角相等;
(2)全等三角形的对应线段(包括角平分线、中线、高线)相等、周长相等、面积相等.
3.常见全等三角形的基本图形
(1)平移全等型
(2)翻折全等型
(3)旋转全等型
考点二 全等三角形的判定
1.全等三角形的判定方法
方 法
内 容
符 号
适用范围
方法1
三边对应相等的两个三角形全等
SSS
所有三角形
方法2
两边及其夹角对应相等的两个三角形全等
SAS
所有三角形
方法3
两个角及其夹边对应相等的两个三角形全等
ASA
所有三角形
方法4
两角及其中一个角的对边对应相等的两个三角形全等
AAS
所有三角形
方法5
斜边和一条直角边对应相等的两个直角三角形全等
HL
直角三角形
温馨提示:
1.方法2是两边和它们的夹角,如果说“两边及其中一边的对角对应相等”,则不能判定两个三角形全等.
2.三个角对应相等的两个三角形不一定全等.
2.全等三角形的判定思路
说明两个三角形全等时要认真分析已知条件,仔细观察图形,弄清已具备了哪些条件,从中找出已知条件和所要说明的结论的内在联系,从而选择最适当的方法,一般可按下面的思路进行.
考点三 角平分线的性质定理及其逆定理)
1.性质定理:角的平分线上的点到角的两边的距离相等.
即如图,∵点P在∠AOB的平分线上,PD⊥OA于点D,PE⊥OB于点E,∴PD=PE.
2.性质定理的逆定理:角的内部,到角的两边距离相等的点,在这个角的平分线上.即如上图,∵PD⊥OA,PE⊥OB,PD=PE,∴OP是∠AOB的平分线.
温馨提示:
应用角平分线的性质定理就可以省去证明三角形全等的步骤,使问题简单化,所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用角平分线的性质定理解决问题.
考点四 线段垂直平分线的性质与判定
1.定义:垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线.
2.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.
3.性质定理的逆定理:与一条线段两个端点的距离相等的点,在这条线段的垂直平分线上.
【例1】(2015·温州)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
【思路点拨】(1)由AB∥CD,可得∠B=∠C,再有AE=DF,∠A=∠D,可得△ABE≌△DCF,由全等三角形的性质可证;(2)通过等量代换得到△DCF为等腰三角形,且∠C=∠B=30°,再通过三角形内角和求得∠D的度数.
【自主解答】
(1)证明:∵AB∥CD, ∴∠B=∠C.∵AE=DF,
∠A=∠D, ∴△ABE≌△DCF(AAS).∴AB=CD.
(2)解:∵AB=CF,AB=CD,∴CD=CF,
∴∠D=∠CFD.
∵∠B=∠C=30°,∴∠D=75°.
方法总结:
判定两个三角形全等时,常用下面的思路:有两角对应相等时找夹边或任一边对应相等;有两边对应相等时找夹角或另一边对应相等.
【变式训练】
1、如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN;
(2)求∠APN的度数.
(1)证明:∵五边形ABCDE是正五边形,
∴AB=BC,∠ABM=∠BCN.
又BM=CN,∴△ABM≌△BCN.
(2)解:∵∠APN是△ABP的一个外角,
∴∠APN=∠BAM+∠ABN=∠CBN+∠ABN=∠ABC==108°.
2、如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有(  )
A.2对 B.3对 C.4对 D.5对
【考点】正方形的性质;全等三角形的判定.
【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.
【解答】解:∵四边形ABCD是正方形,
∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,
在△ABD和△BCD中,

∴△ABD≌△BCD,
∵AD∥BC,
∴∠MDO=∠M′BO,
在△MOD和△M′OB中,

∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,
∴全等三角形一共有4对.
故选C.
3、如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是(  )
A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF
【考点】矩形的性质;全等三角形的判定.
【分析】先根据已知条件判定判定△AFD≌△DCE(AAS),再根据矩形的对边相等,以及全等三角形的对应边相等进行判断即可.
【解答】解:(A)由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,
∴∠ADF=∠DEC.
又∵DE=AD,
∴△AFD≌△DCE(AAS),故(A)正确;
(B)∵∠ADF不一定等于30°,
∴直角三角形ADF中,AF不一定等于AD的一半,故(B)错误;
(C)由△AFD≌△DCE,可得AF=CD,
由矩形ABCD,可得AB=CD,
∴AB=AF,故(C)正确;
(D)由△AFD≌△DCE,可得CE=DF,
由矩形ABCD,可得BC=AD,
又∵BE=BC﹣EC,
∴BE=AD﹣DF,故(D)正确;
故选(B)
4、如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为 (3,4)或(\frac{96}{25},\frac{72}{25})或(﹣\frac{21}{25},\frac{28}{25}) .
【考点】全等三角形的判定;坐标与图形性质.
【分析】由条件可知AB为两三角形的公共边,且△AOB为直角三角形,当△AOB和△APB全等时,则可知△APB为直角三角形,再分三种情况进行讨论,可得出P点的坐标.
【解答】解:如图所示:
①∵OA=3,OB=4,
∴P1(3,4);
②连结OP2,
设AB的解析式为y=kx+b,则

解得.
故AB的解析式为y=﹣x+4,
则OP2的解析式为y=x,
联立方程组得,
解得,
则P2(,);
③连结P2P3,
∵(3+0)÷2=1.5,
(0+4)÷2=2, ∴E(1.5,2), ∵1.5×2﹣=﹣,
2×2﹣=, ∴P3(﹣,).
故点P的坐标为(3,4)或(,)或(﹣,).
故答案为:(3,4)或(,)或(﹣,).
【例2】如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( A )
A.6  B.5 
C.4  D.3
【思路点拨】过点P作PE⊥OB于点E,由角平分线的性质易得PE的长.
方法总结:
题目中若有角平分线这一条件,常考虑2倍角关系或添加垂线段,利用角的平分线的性质定理求角度或证明线段相等或计算线段长度.
【变式训练】
1、 如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为 .
【解析】∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°,∴∠DAO=140°.∵AD=AO,∴∠D=20°.∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO.在△COD和△COB中,CD=CB,∠OCD=∠OCB,OC是公共边,∴△COD≌△COB,∴∠D=∠CBO.∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°.
【答案】60°
2、已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
160020133985
【考点】平行四边形的性质;全等三角形的判定与性质.
【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF≌△CDE即可;
(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,∠B=∠D,
∴∠1=∠DCE,
∵AF∥CE,
∴∠AFB=∠ECB,
∵CE平分∠BCD,
∴∠DCE=∠ECB,
∴∠AFB=∠1,
在△ABF和△CDE中,,
∴△ABF≌△CDE(AAS);
(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,
∴∠1=∠DCE=65°,
∴∠B=∠D=180°﹣2×65°=50°.
【例3】如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.
【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.
【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC与三角形ADB全等即可;
(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.
【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,
∴AE=AD,AC=AB,∠BAC=∠DAE,
∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,
在△AEC和△ADB中,

∴△AEC≌△ADB(SAS);
(2)∵四边形ADFC是菱形,且∠BAC=45°,
∴∠DBA=∠BAC=45°,
由(1)得:AB=AD,
∴∠DBA=∠BDA=45°,
∴△ABD为直角边为2的等腰直角三角形,
∴BD2=2AB2,即BD=2,
∴AD=DF=FC=AC=AB=2,
∴BF=BD﹣DF=2﹣2.
【变式练习】
1、已知:点P是平行四边形ABCD对角线AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为点E、F,点O为AC的中点.
(1)当点P与点O重合时如图1,易证OE=OF(不需证明)
(2)直线BP绕点B逆时针方向旋转,当∠OFE=30°时,如图2、图3的位置,猜想线段CF、AE、OE之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.
【考点】四边形综合题.
【分析】(1)由△AOE≌△COF即可得出结论.
(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG是等边三角形,即可解决问题.
图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.
【解答】解:(1)∵AE⊥PB,CF⊥BP,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,

∴△AOE≌△COF,
∴OE=OF.
(2)图2中的结论为:CF=OE+AE.
图3中的结论为:CF=OE﹣AE.
选图2中的结论证明如下:
延长EO交CF于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠EAO=∠GCO,
在△EOA和△GOC中,

∴△EOA≌△GOC,
∴EO=GO,AE=CG,
在RT△EFG中,∵EO=OG,
∴OE=OF=GO,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=GF,
∵OE=OF,
∴OE=FG,
∵CF=FG+CG,
∴CF=OE+AE.
选图3的结论证明如下:
延长EO交FC的延长线于点G,
∵AE⊥BP,CF⊥BP,
∴AE∥CF,
∴∠AEO=∠G,
在△AOE和△COG中,

∴△AOE≌△COG,
∴OE=OG,AE=CG,
在RT△EFG中,∵OE=OG,
∴OE=OF=OG,
∵∠OFE=30°,
∴∠OFG=90°﹣30°=60°,
∴△OFG是等边三角形,
∴OF=FG,
∵OE=OF,
∴OE=FG,
∵CF=FG﹣CG,
∴CF=OE﹣AE.
3、如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.
(1)补充完成图形;
(2)若EF∥CD,求证:∠BDC=90°.
【考点】旋转的性质.
【分析】(1)根据题意补全图形,如图所示;
(2)由旋转的性质得到∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS得到三角形BDC与三角形EFC全等,利用全等三角形对应角相等即可得证.
【解答】解:(1)补全图形,如图所示;
(2)由旋转的性质得:∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠DCE+∠BCD=90°,
∴∠ECF=∠BCD,
∵EF∥DC,
∴∠EFC+∠DCF=180°,
∴∠EFC=90°,
在△BDC和△EFC中,

∴△BDC≌△EFC(SAS),
∴∠BDC=∠EFC=90°.
【例3】如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
【思路点拨】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠BAC=∠DCA,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.
【自主解答】
(1)解:△ABE≌△CDF,△AFD≌△CEB.
(2)证明:△ABE≌△CDF.
∵AB∥CD,∴∠BAC=∠DCA.
∵AF=CE,∴AF+EF=CE+EF,即AE=FC.
在△ABE和△CDF中,
∴△ABE≌△CDF(AAS).
方法总结:
根据题目给出的条件和图形中隐含的条件,分析哪些三角形全等,再根据三角形全等的判定方法证明即可.
【变式练习】
1、 如图,在四边形ABCD中,AB∥CD,连结BD.请添加一个适当的条件AB=CD或∠A=∠C或∠ADB=∠CBD,使△ABD≌△CDB(只需写一个).
2、如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: AH=CB等(只要符合要求即可) ,使△AEH≌△CEB.
【考点】全等三角形的判定.
【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.
【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,
∴∠BEC=∠AEC=90°,
在Rt△AEH中,∠EAH=90°﹣∠AHE,
又∵∠EAH=∠BAD,
∴∠BAD=90°﹣∠AHE,
在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,
∴∠EAH=∠DCH,
∴∠EAH=90°﹣∠CHD=∠BCE,
所以根据AAS添加AH=CB或EH=EB;
根据ASA添加AE=CE.
可证△AEH≌△CEB.
故填空答案:AH=CB或EH=EB或AE=CE.
3、如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF
(1)根据题意,补全原形;
(2)求证:BE=DF.
11430086360
【考点】平行四边形的性质;全等三角形的判定与性质.
【分析】(1)如图所示;
(2)由全等三角形的判定定理SAS证得△BEO≌△DFO,得出全等三角形的对应边相等即可.
【解答】(1)解:如图所示:
(2)证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,
∴OB=OD,OA=OC.
又∵E,F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF.
∵在△BEO与△DFO中,,
∴△BEO≌△DFO(SAS),
∴BE=DF.
22098048260
4、已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.
(1)求证:AP=BQ;
(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
20574033655
【考点】正方形的性质;全等三角形的判定与性质.
【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.
【解答】解:(1)∵正方形ABCD
∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°
∵DP⊥AQ
∴∠ADP+∠DAP=90°
∴∠BAQ=∠ADP
∵AQ⊥BE于点Q,DP⊥AQ于点P
∴∠AQB=∠DPA=90°
∴△AQB≌△DPA(AAS)
∴AP=BQ
(2)①AQ﹣AP=PQ
②AQ﹣BQ=PQ
③DP﹣AP=PQ
④DP﹣BQ=PQ
【例4】如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△ABC=4S△ADF.其中正确的有(  )
A.1个B.2 个C.3 个D.4个
【考点】相似三角形的判定与性质;全等三角形的判定与性质.
【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;
证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;
证明△ABD~△BCE,得出=,即BC?AD=AB?BE,再由等腰直角三角形的性质和三角形的面积得出BC?AD=AE2;③正确;
由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.
【解答】解:∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=AB,
∵∠ABE=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,
∵点F是AB的中点,
∴FE=AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中,,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD~△BCE,
∴=,即BC?AD=AB?BE,
∵AE2=AB?AE=AB?BE,BC?AD=AC?BE=AB?BE,
∴BC?AD=AE2;③正确;
∵F是AB的中点,BD=CD,∴
S△ABC=2S△ABD=4S△ADF.④正确;
故选:D.
【变式练习】
1、如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是(  )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.
A.4 B.3 C.2 D.1
【考点】四边形综合题.
【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.
【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,
∴CF=BE,
在△ABE和△BCF中,

∴Rt△ABE≌Rt△BCF(SAS),
∴∠BAE=∠CBF,AE=BF,故①正确;
又∵∠BAE+∠BEA=90°,
∴∠CBF+∠BEA=90°,
∴∠BGE=90°,
∴AE⊥BF,故②正确;
根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°
∵CD∥AB,
∴∠CFB=∠ABF,
∴∠ABF=∠PFB,
∴QF=QB,
令PF=k(k>0),则PB=2k
在Rt△BPQ中,设QB=x,
∴x2=(x﹣k)2+4k2,
∴x=,
∴sin=∠BQP==,故③正确;
∵∠BGE=∠BCF,∠GBE=∠CBF,
∴△BGE∽△BCF,
∵BE=BC,BF=BC,
∴BE:BF=1:,
∴△BGE的面积:△BCF的面积=1:5,
∴S四边形ECFG=4S△BGE,故④错误.
故选:B.
2、在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:
①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④S△EMN=.
上述结论中正确的个数是(  )
A.1 B.2 C.3 D.4
【考点】全等三角形的判定与性质;旋转的性质.
【分析】①作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.
②由①Rt△AME≌Rt△FNE,即可得到结论正确;
③经过简单的计算得到BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,
④用面积的和和差进行计算,用数值代换即可.
【解答】解:①如图,
在矩形ABCD中,AD=2AB,E是AD的中点,
作EF⊥BC于点F,则有AB=AE=EF=FC,
∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,

∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
∵AM不一定等于CN,
∴AM不一定等于CN,
∴①错误,
②由①有Rt△AME≌Rt△FNE,
∴∠AME=∠BNE,
∴②正确,
③由①得,BM=CN,
∵AD=2AB=4,
∴BC=4,AB=2
∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,
∴③正确,
④如图,
由①得,CN=CF﹣FN=2﹣AM,AE=AD=2,AM=FN
∵tanα=,
∴AM=AEtanα
∵cosα==,
∴cos2α=,
∴=1+=1+()2=1+tan2α,
∴=2(1+tan2α)
∴S△EMN=S四边形ABNE﹣S△AME﹣S△MBN
=(AE+BN)×AB﹣AE×AM﹣BN×BM
=(AE+BC﹣CN)×2﹣AE×AM﹣(BC﹣CN)×CN
=(AE+BC﹣CF+FN)×2﹣AE×AM﹣(BC﹣2+AM)(2﹣AM)
=AE+BC﹣CF+AM﹣AE×AM﹣(2+AM)(2﹣AM)
=AE+AM﹣AE×AM+AM2
=AE+AEtanα﹣AE2tanα+AE2tan2α
=2+2tanα﹣2tanα+2tan2α
=2(1+tan2α)
=.
∴④正确.
故选C.
【点评】此题是全等三角形的性质和判定题,主要考查了全等三角形的性质和判定,图形面积的计算锐角三角函数,解本题的关键是Rt△AME≌Rt△FNE,难点是计算S△EMN.
【例5】1、如图1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3时,求线段DH的长.
【知识点】等腰三角形——等腰三角形的现性质、特殊的平行四边形——正方形的性质、旋转——旋转的特性、全等三角形——全等三角形的判判定和性质、相似三角形——相似三角形的判判定和性质
【思路分析】(1)先用“SAS”证明△CAF≌△BAD,再用全等三角形的性质即可得BD=CF成立;(2)利用△HFN与△AND的内角和以及它们的等角,得到∠NHF=90°,即可得①的结论;(3)连接DF,延长AB,与DF交于点M,利用△BMD∽△FHD求解.
【解答】(l)解:BD=CF成立.
证明:∵AC=AB,∠CAF=∠BAD=θ;AF=AD,△ABD≌△ACF,∴BD=CF.
(2)①证明:由(1)得,△ABD≌△ACF,∴∠HFN=∠ADN,
在△HFN与△ADN中,∵∠HFN=∠AND,∠HNF=∠AND,∴∠NHF=∠NAD=90°,
∴HD⊥HF,即BD⊥CF.
②解:如图,连接DF,延长AB,与DF交于点M.
在△MAD中,∵∠MAD=∠MDA=45°,∴∠BMD=90°.
在Rt△BMD与Rt△FHD中,∵∠MDB=∠HDF,∴△BMD∽△FHD.
∴AB=2,AD=3,四边形ADEF是正方形,∴MA=MD==3.
∴MB=3-2=1,DB==.
∵=.∴=.
∴DH=.
【方法总结】本题考查了全等三角形的判判定和性质,全等三角形的性质是证明等角、等线段的最为常用的方法;图形的旋转中,对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;
2、如果将四根木条首尾相连,在相连处用螺钉连接,就能构成一个平面图形.
(1)若固定三根木条AB,BC,AD不动,AB=AD=2cm,BC=5cm,如图,量得第四根木条CD=5cm,判断此时∠B与∠D是否相等,并说明理由.
(2)若固定一根木条AB不动,AB=2cm,量得木条CD=5cm,如果木条AD,BC的长度不变,当点D移到BA的延长线上时,点C也在BA的延长线上;当点C移到AB的延长线上时,点A、C、D能构成周长为30cm的三角形,求出木条AD,BC的长度.
【考点】全等三角形的应用;二元一次方程组的应用;三角形三边关系.
【分析】(1)相等.连接AC,根据SSS证明两个三角形全等即可.
(2)分两种情形①当点C在点D右侧时,②当点C在点D左侧时,分别列出方程组即可解决问题,注意最后理由三角形三边关系定理,检验是否符合题意.
【解答】解:(1)相等.
理由:连接AC,
在△ACD和△ACB中,

∴△ACD≌△ACB,
∴∠B=∠D.
(2)设AD=x,BC=y,
当点C在点D右侧时,,解得,
当点C在点D左侧时,解得,
此时AC=17,CD=5,AD=8,5+8<17,
∴不合题意,
∴AD=13cm,BC=10cm.
3、已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
【考点】四边形综合题.
【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF?cos30°,因为CF=BE,只要求出BE即可解决问题.
【解答】(1)解:结论AE=EF=AF.
理由:如图1中,连接AC,
∵四边形ABCD是菱形,∠B=60°,
∴AB=BC=CD=AD,∠B=∠D=60°,
∴△ABC,△ADC是等边三角形,
∴∠BAC=∠DAC=60°
∵BE=EC,
∴∠BAE=∠CAE=30°,AE⊥BC,
∵∠EAF=60°,
∴∠CAF=∠DAF=30°,
∴AF⊥CD,
∴AE=AF(菱形的高相等),
∴△AEF是等边三角形,
∴AE=EF=AF.
(2)证明:如图2中,∵∠BAC=∠EAF=60°,
∴∠BAE=∠CAE,
在△BAE和△CAF中,

∴△BAE≌△CAF,
∴BE=CF.
(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,
∵∠EAB=15°,∠ABC=60°,
∴∠AEB=45°,
在RT△AGB中,∵∠ABC=60°AB=4,
∴BG=2,AG=2,
在RT△AEG中,∵∠AEG=∠EAG=45°,
∴AG=GE=2,
∴EB=EG﹣BG=2﹣2,
∵△AEB≌△AFC,
∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,
∵∠EAF=60°,AE=AF,
∴△AEF是等边三角形,
∴∠AEF=∠AFE=60°
∵∠AEB=45°,∠AEF=60°,
∴∠CEF=∠AEF﹣∠AEB=15°,
在RT△EFH中,∠CEF=15°,
∴∠EFH=75°,
∵∠AFE=60°,
∴∠AFH=∠EFH﹣∠AFE=15°,
∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,
在RT△CHF中,∵∠CFH=30°,CF=2﹣2,
∴FH=CF?cos30°=(2﹣2)?=3﹣.
∴点F到BC的距离为3﹣.
【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.
4、如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
【探究证明】
(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
(2)如图2,求证:∠OAB=∠OAE′.
【归纳猜想】
(3)图1、图2中的“叠弦角”的度数分别为 15° , 24° ;
(4)图n中,“叠弦三角形” 是 等边三角形(填“是”或“不是”)
(5)图n中,“叠弦角”的度数为 60°﹣\frac{180°}{n} (用含n的式子表示)
【考点】几何变换综合题.
【分析】(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;
(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;
(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;
(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;
(5)用(3)的方法求出正n边形的,“叠弦角”的度数.
【解答】解:(1)如图1,
∵四ABCD是正方形,
由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,
∴∠DAP=∠D'AO,
∴△APD≌△AOD'(ASA)
∴AP=AO,
∵∠OAP=60°,
∴△AOP是等边三角形,
(2)如图2,
作AM⊥DE于M,作AN⊥CB于N.
∵五ABCDE是正五边形,
由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°
∴∠EAP=∠E'AO
∴△APE≌△AOE'(ASA)
∴∠OAE'=∠PAE.
在Rt△AEM和Rt△ABN中,∠AEM=∠ABN=72°,????????AE=AB
∴Rt△AEM≌Rt△ABN (AAS),
∴∠EAM=∠BAN,AM=AN.
在Rt△APM和Rt△AON中,AP=AO,AM=AN
∴Rt△APM≌Rt△AON (HL).
∴∠PAM=∠OAN,
∴∠PAE=∠OAB
∴∠OAE'=∠OAB (等量代换).
(3)由(1)有,△APD≌△AOD',
∴∠DAP=∠D′AO,
在△AD′O和△ABO中,

∴△AD′O≌△ABO,
∴∠D′AO=∠BAO,
由旋转得,∠DAD′=60°,
∵∠DAB=90°,
∴∠D′AB=∠DAB﹣∠DAD′=30°,
∴∠D′AD=∠D′AB=15°,
同理可得,∠E′AO=24°,
故答案为:15°,24°.
(4)如图3,
∵六边形ABCDEF和六边形A′B′C′E′F′是正六边形,
∴∠F=F′=120°,
由旋转得,AF=AF′,EF=E′F′,
∴△APF≌△AE′F′,
∴∠PAF=∠E′AF′,
由旋转得,∠FAF′=60°,AP=AO
∴∠PAO=∠FAO=60°,
∴△PAO是等边三角形.
故答案为:是
(5)同(3)的方法得,∠OAB=[(n﹣2)×180°÷n﹣60°]÷2=60°﹣
故答案:60°﹣.
【巩固练习】
1、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB
求证:AE=CE.
【考点】全等三角形的判定与性质.
【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.
【解答】证明:∵FC∥AB,
∴∠A=∠ECF,∠ADE=∠CFE,
在△ADE和△CFE中,

∴△ADE≌△CFE(AAS),
∴AE=CE.
2.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.

【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
【解答】证明:∵CE∥DF,
∴∠ACE=∠D,
在△ACE和△FDB中,

∴△ACE≌△FDB(SAS),
∴AE=FB.
【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
3. (2016·重庆市B卷·7分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.
【考点】全等三角形的判定与性质.
【专题】证明题.
【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.
【解答】证明:∵AB∥CD,
∴∠BAC=∠ECD,
在△ABC和△CED中,

∴△ABC≌△CED(SAS),
∴∠B=∠E.
【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.
2895605835654.(2016·广西桂林·3分)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=  .
4362450295910【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.
605790206375【分析】在BD上截取BE=CH,连接CO,OE,根据相似三角形的性质得到 ,求得CH= ,根据等腰直角三角形的性质得到AO=OB=OC,
∠A=∠ACO=∠BCO=∠ABC=45°,等量代换得到∠OCH=∠ABD,根据全等三角形的性质得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根据等腰直角三角形的性质即可得到结论.
【解答】解:在BD上截取BE=CH,连接CO,OE,
∵∠ACB=90°CH⊥BD,
∵AC=BC=3,CD=1,
∴BD= ,
∴△CDH∽△BDC,
506730358775∴,
∴CH= ,
∵△ACB是等腰直角三角形,点O是AB中点,
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO与△BEO中,,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD﹣DH﹣CH=﹣﹣=,
∴OH=EH×=,
故答案为:.
5.如图,在?ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
26670055245
【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.
第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.
【解答】(1)证明:∵在?ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=BC,AF=DF=AD,
∴BE=DF.
∴△ABE≌△CDF.
(2)解:∵四边形AECF为菱形时,
∴AE=EC.
又∵点E是边BC的中点,
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=BC=BE,
∴AB=BE=AE,即△ABE为等边三角形,(6分)
?ABCD的BC边上的高为2×sin60°=,(7分)
∴菱形AECF的面积为2.(8分)
【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.
6.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.
(1)求证:△ABC≌△DEF;
(2)指出图中所有平行的线段,并说明理由.
7.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.
(1)求证:BD=CE;
(2)求证:∠M=∠N.

【分析】(1)由SAS证明△ABD≌△ACE,得出对应边相等即可
(2)证出∠BAN=∠CAM,由全等三角形的性质得出∠B=∠C,由AAS证明△ACM≌△ABN,得出对应角相等即可.
【解答】(1)证明:在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE;
(2)证明:∵∠1=∠2,
∴∠1+∠DAE=∠2+∠DAE,
即∠BAN=∠CAM,
由(1)得:△ABD≌△ACE,
∴∠B=∠C,
在△ACM和△ABN中,,
∴△ACM≌△ABN(ASA),
∴∠M=∠N.
8.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E
(1)求证:DE=AB;
(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)
【考点】扇形面积的计算;全等三角形的判定与性质;矩形的性质.
【分析】(1)根据矩形的性质得出∠B=90°,AD=BC,AD∥BC,求出∠DAE=∠AFB,∠AED=90°=∠B,根据AAS推出△ABF≌△DEA即可;
(2)根据勾股定理求出AB,解直角三角形求出∠BAF,根据全等三角形的性质得出DE=DG=AB=,∠GDE=∠BAF=30°,根据扇形的面积公式求得求出即可.
【解答】(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠AED=90°=∠B,
在△ABF和△DEA中

∴△ABF≌△DEA(AAS),
∴DE=AB;
(2)解:∵BC=AD,AD=AF,
∴BC=AF,
∵BF=1,∠ABF=90°,
∴由勾股定理得:AB==,
∴∠BAF=30°,
∵△ABF≌△DEA,
∴∠GDE=∠BAF=30°,DE=AB=DG=,
∴扇形ABG的面积==π.
9、如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
【分析】当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
【解答】解:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
∴CD=DA=DB,
∴∠DAC=∠DCA,
∵A′C∥AC,
∴∠DA′E=∠A,∠DEA′=∠DCA,
∴∠DA′E=∠DEA′,
∴DA′=DE,
∴△A′DE是等腰三角形.
∵四边形DEFD′是菱形,
∴EF=DE=DA′,EF∥DD′,
∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
∵CD∥C′D′,
∴∠A′DE=∠A′D′C=∠EFC,
在△A′DE和△EFC′中,

∴△A′DE≌△EFC′.
【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.