等比数列的前n项和
一、选择题
1.设等比数列{an}的前n项和为Sn,若S2=3,S4=15,则S6=( )
A.31 B.32 C.63 D.64
2.已知{an}是等比数列,a3=1,a6=,则a1a2+a2a3+…+anan+1等于( )
A.16(1-4-n) B.16(1-2-n)
C.(1-4-n) D.(1-2-n)
3.设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则a1=( )
A.-2 B.-1 C. D.
4.已知{an}是首项为1的等比数列,Sn是其前n项和,且9S3=S6,则数列的前5项和等于( )
A.或5 B.或5 C. D.
5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏 C.5盏 D.9盏
二、填空题
6.在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|an|=________.
7.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
8.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.
三、解答题
9.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
10.已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(1)求{an}的通项公式;
(2)记bn=的前n项和为Tn,求Tn.
能力过关
11.(多选题)设等比数列的公比为q,其前n项和为Sn,前n项积为Tn,并且满足条件a1>1,a7a8>1,<0.则下列结论正确的是( )
A.0
C.Tn的最大值为T7 D.Sn的最大值为S7
12.(多选题)如图所示,作边长为3的正△ABC的内切圆,在这个圆内作内接正三角形,然后作新三角形的内切圆.如此下去.则下列说法正确的是( )
A.△ABC为第一个正三角形,那么第三个正三角形面积为
B.△ABC为第一个正三角形,那么第三个正三角形面积为
C.n个内切圆的面积和为π
D.n个内切圆的面积和为3π
13.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________.
14.在《九章算术》中有一个古典名题“两鼠穿墙”问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?”大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.问________天后两鼠相遇?如果墙足够厚,Sn为前n天两只老鼠打的洞长度之和,则Sn=________尺.
15.已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
一、选择题
1.设等比数列{an}的前n项和为Sn,若S2=3,S4=15,则S6=( )
A.31 B.32 C.63 D.64
C [在等比数列{an}中,S2、S4-S2、S6-S4也成等比数列,故(S4-S2)2=S2(S6-S4),
则(15-3)2=3(S6-15),
解得S6=63.]
2.已知{an}是等比数列,a3=1,a6=,则a1a2+a2a3+…+anan+1等于( )
A.16(1-4-n) B.16(1-2-n)
C.(1-4-n) D.(1-2-n)
C [∵a3=1,a6=,∴q=,∴a1=4,
∴a1a2=8,∵=q2=,
∴数列{anan+1}是以8为首项,为公比的等比数列.
∴a1a2+a2a3+…+anan+1=(1-4-n).]
3.设公比为q(q>0)的等比数列{an}的前n项和为Sn.若S2=3a2+2,S4=3a4+2,则a1=( )
A.-2 B.-1 C. D.
B [由S2=3a2+2,S4=3a4+2得a3+a4=3a4-3a2,即q+q2=3q2-3,解得q=-1(舍)或q=,将q=代入S2=3a2+2中得a1+a1=3×a1+2,解得a1=-1.故选B. ]
4.已知{an}是首项为1的等比数列,Sn是其前n项和,且9S3=S6,则数列的前5项和等于( )
A.或5 B.或5 C. D.
C [设数列{an}的公比为q,显然q≠1,由已知得=,解得q=2(q=1舍去),∴数列是以1为首项,为公比的等比数列,前5项和为)),1-\f(1,2))=.]
5.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏 C.5盏 D.9盏
B [设塔的顶层的灯数为a1,七层塔的总灯数为S7,公比为q,则由题意知S7=381,q=2,
∴S7===381,解得a1=3.
故选B.]
二、填空题
6.在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|an|=________.
2n-1- [由a4=a1q3得q=-2,∴an=(-2)n-1,
∴|an|=2n-2.∴|a1|+|a2|+…+|an|==2n-1-.]
7.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和.若Sn=126,则n=________.
6 [∵a1=2,an+1=2an,
∴数列{an}是首项为2,公比为2的等比数列,
又∵Sn=126,∴=126,∴n=6.]
8.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.
6 [由题意知,第n天植树2n棵,则前n天共植树2+22+…+2n=(2n+1-2)棵,令2n+1-2≥100,则2n+1≥102,
又26=64,27=128,且{2n+1}单调递增,所以n≥6,即n的最小值为6.]
三、解答题
9.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
[解] (1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),
由于a1≠0,故2q2+q=0.
又q≠0,从而q=-.
(2)由已知可得a1-a1=3,
故a1=4.
从而Sn=)),1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2))))=)).
10.已知正项等差数列{an}的前n项和为Sn,若S3=12,且2a1,a2,a3+1成等比数列.
(1)求{an}的通项公式;
(2)记bn=的前n项和为Tn,求Tn.
[解] (1)设正项等差数列{an}的公差为d,则d>0.∵S3=12,即a1+a2+a3=12,∴3a2=12,∴a2=4.又2a1,a2,a3+1成等比数列,∴a=2a1·(a3+1),即42=2(4-d)·(4+d+1),解得d=3或d=-4(舍去),∴a1=a2-d=1,故an=3n-2.
(2)bn===(3n-2)×,
∴Tn=1×+4×+7×+…+(3n-2)×. ①
①×得Tn=1×+4×+7×+…+(3n-5)×+(3n-2)×. ②
①-②得,Tn=+3×+3×+3×+…+3×-(3n-2)×=+3×-(3n-2)×=-×-(3n-2)×,
∴Tn=-×-×=-×.
能力过关
11.(多选题)设等比数列的公比为q,其前n项和为Sn,前n项积为Tn,并且满足条件a1>1,a7a8>1,<0.则下列结论正确的是( )
A.0C.Tn的最大值为T7 D.Sn的最大值为S7
ABC [∵a1>1,a7a8>1,<0,∴a7>1,0∴0C中T7是数列{Tn}中的最大项,故C正确.
D中因为a7>1,012.(多选题)如图所示,作边长为3的正△ABC的内切圆,在这个圆内作内接正三角形,然后作新三角形的内切圆.如此下去.则下列说法正确的是( )
A.△ABC为第一个正三角形,那么第三个正三角形面积为
B.△ABC为第一个正三角形,那么第三个正三角形面积为
C.n个内切圆的面积和为π
D.n个内切圆的面积和为3π
BC [S△ABC=×32=,因为下一个三角形面积依次为上一个正三角形面积的倍,所以第三个正三角形的面积为×=.故A错误,B正确.又根据条件,第一个内切圆的半径为×3=,面积为π,第二个内切圆的半径为,面积为π,…,这些内切圆的面积组成一个等比数列,首项为π,公比为,故面积之和为=π,则C正确,D错误.故选BC.]
13.设数列{an}的前n项和为Sn.若S2=4,an+1=2Sn+1,n∈N*,则a1=________,S5=________.
1 121 [由于解得由an+1=Sn+1-Sn=2Sn+1得Sn+1=3Sn+1,所以Sn+1+=3,所以是以为首项,3为公比的等比数列,所以Sn+=×3n-1,即Sn=,所以S5=121.]
14.在《九章算术》中有一个古典名题“两鼠穿墙”问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?”大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.问________天后两鼠相遇?如果墙足够厚,Sn为前n天两只老鼠打的洞长度之和,则Sn=________尺.
2 2n-+1 [由题意先估计:两天不够,三天又多,设需要x天,则可得1+2+4(x-2)+1++(x-2)=5.解得x=2,即2天两只老鼠相遇.由题意可知,大老鼠前n天打洞长度为=2n-1,小老鼠前n天打洞长度为,1-\f(1,2))=2-,所以Sn=2n-1+2-=2n-+1.]
15.已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
[解] (1)设数列{xn}的公比为q,由已知可得q>0.
由题意得
消去x1得3q2-5q-2=0.
因为q>0,所以q=2,x1=1,
因此数列{xn}的通项公式为xn=2n-1.
(2)过P1,P2,…,Pn+1向x轴作垂线,垂足分别为Q1,Q2,…,Qn+1(图略).
由(1)得xn+1-xn=2n-2n-1=2n-1,
记梯形PnPn+1Qn+1Qn的面积为bn,
由题意得bn=×2n-1=(2n+1)×2n-2,
所以Tn=b1+b2+…+bn
=3×2-1+5×20+7×21+…+(2n-1)×2n-3+(2n+1)×2n-2. ①
又2Tn=3×20+5×21+7×22+…+(2n-1)×2n-2+(2n+1)×2n-1. ②
①-②得,-Tn=3×2-1+(2+22+…+2n-1)-(2n+1)×2n-1=+-(2n+1)×2n-1.
所以Tn=.