《1.1等腰三角形》期末复习专题提升训练 2020-2021学年北师大版数学八年级下册(Word版 附答案)

文档属性

名称 《1.1等腰三角形》期末复习专题提升训练 2020-2021学年北师大版数学八年级下册(Word版 附答案)
格式 doc
文件大小 279.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-06-22 11:20:13

图片预览

文档简介

2021学年北师大版八年级数学下册《1.1等腰三角形》期末复习专题提升训练(附答案)
1.如图,△ABC中,∠A=∠ABC,DE垂直平分BC,交BC于点D,交AC于点E.
(1)若AB=5,BC=8,求△ABE的周长;
(2)若BE=BA,求∠C的度数.
2.如图,在△ABC中,AB=AC,∠BAC=36°,BD平分∠ABC交AC于点D,过点A作AE∥BC,交BD的延长线于点E.
(1)求∠ADB的度数;
(2)求证:△ADE是等腰三角形.
3.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.
(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;
(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.
4.如图,在△ABC中,B=90°,AB=16cm,BC=12cm,AC=20cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)当点Q在边BC上运动时,出发几秒后,△PQB是等腰三角形?
(2)当点Q在边CA上运动时,出发几秒后,△BCQ是以BC或BQ为底边的等腰三角形?
5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.
(1)求证:∠AEC=∠ACE;
(2)若∠AEC=2∠B,AD=1,求BD的长.
6.如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.
(1)求证:AB=AC;
(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.
7.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.
(1)求证:△ABC是等腰三角形.
(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.
8.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F.
(1)证明:BA=BC;
(2)求证:△AFC为等腰三角形.
9.已知:在△ABC中,AC<AB<BC.线段AB的垂直平分线交BC于点D,点E在BC上,且BE=AB.连接AD,AE,∠AEC=3∠BAD.
(1)如图1,求证:AD=AE;
(2)如图2,当∠B=2∠CAE时,在不添加任何辅助线情况下,请直接写出图2中的四个等腰三角形.
10.在△ABC中,AB=AC,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于F.
(1)若∠BAC=120°,求∠BAD的度数.
(2)求证:△ADF是等腰三角形.
11.如图,已知△ABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.
求证:CE=CF.
12.如图,已知在△ABC中,AC=BC=AD,∠CDE=∠B,
求证:△CDE是等腰三角形.
13.如图,四边形ABCD中,AB∥CD,点E为CD上一点,连接BE,AE,且BE、AE分别平分∠ABC、∠BAD.求证:CD=AD+BC.
14.如图,△ABC中,AB=AC,∠B=30°,点O在BC边上运动(O不与B、C重合),连接AO.作∠AOD=∠B,OD交AB于点D.
(1)当OD∥AC时,判断△AOB的形状并证明;
(2)在点O的运动过程中,△AOD的形状可以是等腰三角形吗?若可以,请求出∠BDO的度数;若不可以,请说明理由.
15.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°﹣∠BDO.
(1)求证:AC=BC;
(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.
16.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BDA=115°时,∠BAD=   °;点D从B向C运动时,∠BDA逐渐变   (填“大”或“小”);
(2)当DC等于多少时,△ABD≌△DCE,请说明理由;
(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.
如图,在△ABC中,∠B=2∠C,且AD⊥BC于点D,点E是BC上一点,AE=AB.
求证:(1)BD=ED; (2)CD=AB+BD.
18.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
19.如图,已知D是∠ABC的平分线与△ABC的外角平分线的交点,DE∥BC,交AB于点E,交AC于点F.求证:EF=BE﹣CF.
20.已知:如图,在△ABC中,AB>AC,∠B=45°,点D是BC边上一点,且AD=AC,过点C作CF⊥AD于点E,与AB交于点F.
(1)若∠CAD=α,求∠ACD的度数.
(2)在(1)的条件下,求∠BCF的大小;(用含α的式子表示)
(3)判断△ACF的形状,并说明理由.
21.如图,在等边△ABC中,AB=12cm,现有M,N两点分别从点A,B同时出发,沿△ABC的边按顺时针方向运动,已知点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N同时停止运动,设运动时间为t(s).
(1)当t为何值时,M,N两点重合?两点重合在什么位置?
(2)当点M,N在BC边上运动时,是否存在使AM=AN的位置?若存在,请求出此时点M,N运动的时间;若不存在,请说明理由.
22.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.
23.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)【特殊情况,探索结论】:如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE   DB(填“>”、“<”或“=”).
(2)【特例启发,解答题目】:如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE   DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).
(3)【拓展结论,设计新题】
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).
24.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.
(1)如图1,连接EC,求证:△EBC是等边三角形;
(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;
(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.
25.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)探究:当α为多少度时,△AOD是等腰三角形.
参考答案
1.解:(1)∵∠A=∠ABC,
∴AC=BC,
∵DE是BC的垂直平分线,
∴BE=CE,
∴△ABE的周长=AB+AE+BE=AB+AE+CE=AB+AC=AB+BC,
∵AB=5,BC=8,
∴△ABE的周长=5+8=13;
(2)∵BE=BA,
∴∠A=∠AEB,
∵BE=CE,
∴∠EBC=∠C,
∴∠A=∠AEB=∠EBC+∠C=2∠C,
∵∠A+∠ABC+∠C=5∠C=180°,
解得:∠C=36°.
2.(1)解:∵AB=AC,∠BAC=36°,
∴∠ABC=∠C=(180°﹣∠BAC)=72°,
∵BD平分∠ABC,
∴∠DBC=∠ABC=36°,
∴∠ADB=∠C+∠DBC=72°+36°=108°;
(2)证明:∵AE∥BC,
∴∠EAC=∠C=72°,
∵∠C=72°,∠DBC=36°,
∴∠ADE=∠CDB=180°﹣72°﹣36°=72°,
∴∠EAD=∠ADE,
∴AE=DE,
∴△ADE是等腰三角形.
3.解:(1)△APB是直角三角形,
理由如下:∵AB=AC,∠B=30°,
∴∠C=30°=∠B=∠APQ,
∵PQ∥AC,
∴∠BPQ=∠C,
∴∠APB=60°,
∴∠BAP=90°,
∴△APB是直角三角形;
(2)当AQ=QP时,
∴∠QAP=∠APQ=30°,
∴∠BQP=∠QAP+∠APQ=60°,
当AP=PQ时,则∠AQP=∠PAQ=75°,
∴∠BQP=105°,
当AQ=AP时,则∠AQP=∠APQ=30°,
∵P不与B、C重合,
∴不存在,
综上所述:∠BQP=105°或60°.
4.解:(1)由题意可知AP=t,BQ=2t,
∵AB=16,
∴BP=AB﹣AP=16﹣t,
当△PQB为等腰三角形时,则有BP=BQ,
即16﹣t=2t,解得t=,
∴出发秒后△PQB能形成等腰三角形;
(2)①当△BCQ是以BC为底边的等腰三角形时:CQ=BQ,如图1所示,
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°.
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10(cm),
∴BC+CQ=22(cm),
∴t=22÷2=11(秒).
②当,△BCQ是以BQ为底边的等腰三角形时:CQ=BC,如图2所示,
则BC+CQ=24(cm),
∴t=24÷2=12(秒).
综上所述:当t为11秒或12秒时,△BCQ是以BC或BQ为底边的等腰三角形.
5.解:(1)∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠A=∠B+∠A=90°,
∴∠ACD=∠B,
∵CE平分∠BCD,
∴∠BCE=∠DCE,
∴∠B+∠BCE=∠ACD+∠DCE,
即∠AEC=∠ACE;
(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,
∴∠B=∠BCE,
又∵∠ACD=∠B,∠BCE=∠DCE,
∴∠ACD=∠BCE=∠DCE,
又∵∠ACB=90°,
∴∠ACD=30°,∠B=30°,
∴Rt△ACD中,AC=2AD=2,
∴Rt△ABC中,AB=2AC=4,
∴BD=AB﹣AD=4﹣1=3.
6.证明:(1)过点A作AF⊥BC于点F,
∵AD=AE,
∴DF=EF,
∵BD=CE,
∴BF=CF,
∴AB=AC.
(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,
∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,
7.证明:(1)∵AE∥BC,
∴∠B=∠DAE,∠C=∠CAE.
∵AE平分∠DAC,
∴∠DAE=∠CAE.
∴∠B=∠C.
∴AB=AC.
∴△ABC是等腰三角形.
(2)∵F是AC的中点,
∴AF=CF.
∵AE∥BC,
∴∠C=∠CAE.
由对顶角相等可知:∠AFE=∠GFC.
在△AFE和△CFG中,
∴△AFE≌△CFG.
∴AE=GC=8.
∵GC=2BG,
∴BG=4.
∴BC=12.
∴△ABC的周长=AB+AC+BC=10+10+12=32.
8.证明:(1)在△ABD和△CBE中,

∴△ABD≌△CBE(AAS),
∴BA=BC;
(2)∵BA=BC,
∴∠BAC=∠BCA,
∵∠BAD=∠BCE,
∴∠FAC=∠FCA,
∴FA=FC,
∴△AFC为等腰三角形.
9.(1)证明:设∠B=α,
∵线段AB的垂直平分线交BC于点D,
∴AD=BD,
∴∠B=∠BAD=α,
∴∠ADE=∠B+∠BAD=2α,
∵∠AEC=3∠BAD=3α,∠AEC=∠B+∠BAE,
∴∠DAE=α,
∵AB=BE,
∴∠AEB=∠BAE=2α,
∴∠ADE=∠AED,
∴AD=AE;
(2)解:如图2,由(1)知:AD=BD,AD=AE,
∴△ABD和△ADE都是等腰三角形,
∵AB=BE,
∴△ABE也是等腰三角形,
∵∠B=2∠CAE,
∴∠CAE=α,
△AEC中,∠C=∠AED﹣∠CAE=2α﹣α=α,
∵∠DAC=∠DAE+∠CAE=α+α=α,
∴∠C=∠DAC,
∴AD=CD,
∴△ADC是等腰三角形,
综上,图2中的四个等腰三角形分别是:△ABD,△ABE,△ADE,△ADC.
10.(1)解:∵△ABC是等腰三角形,D为底边的中点,
∴AD⊥BC,∠BAD=∠CAD,
∵∠BAC=120°,
∴∠BAD=60°;
(2)证明:∵△ABC是等腰三角形,D为底边的中点,
∴AD⊥BC即∠ADB=90°,
∵AE是∠BAD的角平分线,
∴∠DAE=∠EAB=30°,
∵DF∥AB,
∴∠F=∠BAE=30°,
∴∠DAF=∠F=30°,
∴AD=DF,
∴△ADF是等腰三角形.
11.证明:∵∠ACB=90°,CD⊥AB,
∴∠CBF+∠CFB=∠DBE+∠DEB=90°,
∵BF平分∠ABC,
∴∠CBF=∠DBE,
∴∠CFB=∠DEB,
又∵∠FEC=∠DEB,
∴∠CFB=∠FEC,
∴CE=CF.
12.证明:∵∠ADE+∠CDE+∠BDC=180°,∠BCD+∠B+∠BDC=180°,∠CDE=∠B,
∴∠ADE=∠BCD,
∵AC=BC,
∴∠A=∠B,
在△ADE和△BCD中,

∴△ADE≌△BCD(ASA),
∴DE=CD,
∴△CDE是等腰三角形.
13.证明:∵AE平分∠DAB,BE平分∠ABC,
∴∠DAE=∠BAE,∠ABE=∠EBC,
∵AB∥CD,
∴∠BAE=∠DEA,∠ABE=∠BEC,
∴∠DAE=∠DEA,∠EBC=∠BEC,
∴AD=DE,BC=CE.
∴CD=DE+CE=AD+BC.
14.解:(1)△AOB为直角三角形,理由如下:
∵AB=AC,∠B=30°,
∴∠C=∠B=30°,
∴∠BAC=180°﹣30°﹣30°=120°,
∵OD∥AC,∠AOD=∠B=30°,
∴∠OAC=∠AOD=30°,
∴∠BAO=120°﹣30°=90°,
∴△AOB是直角三角形;
(2)△AOD的形状可以是等腰三角形,理由如下:
分三种情况:
①DA=DO时,∠OAD=∠AOD=30°,
∴∠BDO=∠OAD+∠AOD=60°;
②OA=OD时,∠ODA=∠OAD=(180°﹣30°)=75°,
∴∠BDO=180°﹣75°=105°;
③AD=AO时,∠ADO=∠AOD=30°,
∴∠OAD=120°=∠BAC,点O与C重合,不合题意;
综上所述,∠BDO的度数为60°或105°.
15.(1)证明:∵∠CAO=90°﹣∠BDO,
∴∠CAO=∠CBD.
在△ACD和△BCD中,
∴△ACD≌△BCD(AAS).
∴AC=BC;
(2)由(1)知∠CAD=∠DEA=∠DBO,
∴BD=AD=DE,过D作DN⊥AC于N点,如右图所示:
∵∠ACD=∠BCD,
∴DO=DN,
在Rt△BDO和Rt△EDN中,
∴Rt△BDO≌Rt△EDN(HL),
∴BO=EN.
在△DOC和△DNC中,
∴△DOC≌△DNC(AAS),
可知:OC=NC;
∴BC+EC=BO+OC+NC﹣NE=2OC=8.
16.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;
从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;
故答案为:25°;小.
(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,
∴∠EDC=∠DAB.,
∵∠B=∠C,
∴当DC=AB=2时,△ABD≌△DCE,
(3)∵AB=AC,
∴∠B=∠C=40°,
①当AD=AE时,∠ADE=∠AED=40°,
∵∠AED>∠C,
∴此时不符合;
②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,
∵∠BAC=180°﹣40°﹣40°=100°,
∴∠BAD=100°﹣70°=30°;
∴∠BDA=180°﹣30°﹣40°=110°;
③当EA=ED时,∠ADE=∠DAE=40°,
∴∠BAD=100°﹣40°=60°,
∴∠BDA=180°﹣60°﹣40°=80°;
∴当∠ADB=110°或80°时,△ADE是等腰三角形.
17.证明:(1)∵AB=AE,
∴∠B=∠AEB,
∵AD⊥BC,
∴DE=BD.
(2)在△ACE中,∠AEB=∠C+∠CAE=∠B,
又∵∠B=2∠C,
∴2∠C=∠C+∠CAE,
∴∠C=∠CAE,
∴CE=AE=AB,
∴CD=CE+DE=AB+BD.
18.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;
∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;
∵BE=BE,∠ABE=∠DEB,
∴△ABE≌△DBE(SAS),
∴AB=BD,
∴△ABD和△ADE均为等腰三角形;
∵∠C=45°,ED⊥DC,
∴△EDC也符合题意,
综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)AD与BE垂直.
证明:∵△ABE≌△DBE(SAS),
∴BA=BD,EA=EC,
∴BE垂直平分相等AD,即AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,
∴AE=DE,
在Rt△ABE和Rt△DBE中
∴Rt△ABE≌Rt△DBE(HL),
∴AB=BD,
又△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°,又ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
19.解:∵BD平分∠ABC,
∴∠DBE=∠DBC.
∵DE∥BC,
∴∠EDB=∠DBC.
∴∠ABD=∠EDB,
∴BE=DE.
∵CD平分∠ACG,
∴∠ACD=∠DCG.
∵DE∥BC,
∴∠EDC=∠DCG.
∴∠ACD=∠EDC,
∴CF=DF.
∵EF+DF=DE,
∴EF=BE﹣CF.
20.解:(1)∵AD=AC,
∴∠ACD=∠ADC,
∵∠CAD=α,
∴∠ACD=(180°﹣∠CAD)=90;
(2)过点A作AG⊥BC于点G,如图所示:
∴∠DAG+∠ADG=90°,
∵AD=AC,
∴∠CAG=∠DAG=∠CAD=α,
∵CF⊥AD于点E,
∴∠DCE+∠ADG=90°,
∴∠DCE=∠DAG=∠CAD=α,
即∠BCF=α;
(3)△ACF是等腰三角形.
理由:∵∠B=45°,AG⊥BC,
∴∠BAG=45°,
∵∠BAC=45°+∠CAG,∠AFC=45°+∠DCE,∠DCE=∠DAG,∠CAG=∠DAG,
∴∠BAC=∠AFC,
∴AC=FC,
∴△ACF是等腰三角形.
21.解:(1)由题意,t×1+12=2t,
解得:t=12,
∴当t=12时,M,N两点重合,
此时两点在点C处重合;
(2)结论:当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形.
理由:由(1)知12秒时M、N两点重合,恰好在C处,
如图,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,

∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,
∴CM=y﹣12,NB=36﹣2y,
∵CM=NB,
∴y﹣12=36﹣2y,
解得:y=16.故假设成立.
∴当点M、N在BC边上运动时,当运动时间为12秒或16秒时,AM=AN.
22.解:△APQ为等边三角形.
证明:∵△ABC为等边三角形,
∴AB=AC.
在△ABP与△ACQ中,
∵,
∴△ABP≌△ACQ(SAS).
∴AP=AQ,∠BAP=∠CAQ.
∵∠BAC=∠BAP+∠PAC=60°,
∴∠PAQ=∠CAQ+∠PAC=60°,
∴△APQ是等边三角形.
23.解:(1)当E为AB的中点时,AE=DB;
(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,
证明:∵△ABC为等边三角形,
∴△AEF为等边三角形,
∴AE=EF,BE=CF,
∵ED=EC,
∴∠D=∠ECD,
∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,
∴∠DEB=∠ECF,
在△DBE和△EFC中,

∴△DBE≌△EFC(SAS),
∴DB=EF,
则AE=DB;
(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,
∴DB=EF=2,BC=1,
则CD=BC+DB=3.
故答案为:(1)=;(2)=
24.(1)证明:如图1所示:
在Rt△ABC中,∠ACB=90°,∠A=30°,
∴∠ABC=60°,BC=.
∵BD平分∠ABC,
∴∠1=∠DBA=∠A=30°.
∴DA=DB.
∵DE⊥AB于点E.
∴AE=BE=.
∴BC=BE.
∴△EBC是等边三角形;
(2)结论:AD=DG+DM.
证明:如图2所示:延长ED使得DW=DM,连接MW,
∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,
∴∠ADE=∠BDE=60°,AD=BD,
又∵DM=DW,
∴△WDM是等边三角形,
∴MW=DM,
在△WGM和△DBM中,

∴△WGM≌△DBM,
∴BD=WG=DG+DM,
∴AD=DG+DM.
(3)结论:AD=DG﹣DN.
证明:延长BD至H,使得DH=DN.
由(1)得DA=DB,∠A=30°.
∵DE⊥AB于点E.
∴∠2=∠3=60°.
∴∠4=∠5=60°.
∴△NDH是等边三角形.
∴NH=ND,∠H=∠6=60°.
∴∠H=∠2.
∵∠BNG=60°,
∴∠BNG+∠7=∠6+∠7.
即∠DNG=∠HNB.
在△DNG和△HNB中,
∴△DNG≌△HNB(ASA).
∴DG=HB.
∵HB=HD+DB=ND+AD,
∴DG=ND+AD.
∴AD=DG﹣ND.
25.解:(1)∵△BOC≌△ADC,
∴OC=DC,
∵∠OCD=60°,
∴△OCD是等边三角形.
(2)△AOD是直角三角形.
理由如下:
∵△OCD是等边三角形,
∴∠ODC=60°,
∵△BOC≌△ADC,α=150°,
∴∠ADC=∠BOC=α=150°,
∴∠ADO=∠ADC﹣∠ODC=150°﹣60°=90°,
∴△AOD是直角三角形.
(3)∵△OCD是等边三角形,
∴∠COD=∠ODC=60°.
∵∠AOB=110°,∠ADC=∠BOC=α,
∴∠AOD=360°﹣∠AOB﹣∠BOC﹣∠COD=360°﹣110°﹣α﹣60°=190°﹣α,
∠ADO=∠ADC﹣∠ODC=α﹣60°,
∴∠OAD=180°﹣∠AOD﹣∠ADO=180°﹣(190°﹣α)﹣(α﹣60°)=50°.
①当∠AOD=∠ADO时,190°﹣α=α﹣60°,
∴α=125°.
②当∠AOD=∠OAD时,190°﹣α=50°,
∴α=140°.
③当∠ADO=∠OAD时,
α﹣60°=50°,
∴α=110°.
综上所述:当α=110°或125°或140°时,△AOD是等腰三角形