第12讲.存在性问题
【专题精讲】
存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典例精析】
例1、如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC = 4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交射线BC于点E,设AP=x.
⑴若设BE=y,求y关于x的函数关系式;
⑶若BC的长可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若存在,求出相应的AP的长;若不存在,请说明理由,并直接写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C.
例2、△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1)当点B在第一象限,纵坐标是时,求点B的横坐标;
(2)如果抛物线y=ax 2+bx+c(a≠0)的对称轴经过点C,请你探究:
①当a=,b=-,c=-时,A,B两点是否都在这条抛物线上?并说明理由;
②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.
例3、在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在斜边AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若点F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
例4、如图1,在平面直角坐标系中,拋物线y=ax2c与x轴正半轴交于点F(16,0)、与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合;
(1) 求拋物线的函数表达式;
(2) 如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A、B两点重合,点Q不与C、D两点重合)。设点A的坐标为(m,n) (m>0)。
① 当PO=PF时,分别求出点P和点Q的坐标;
②在的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③ 当n=7时,是否存在m的值使点P为AB边中点。若存在,请求出m的值;若不存在,请说明理由。
【巩固演练】
1、如图1,在正方形ABCD中,AB=1,是以点B为圆心.AB长为半径的圆的一段弧点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F石为切点.
⑴ 当 ∠DEF=45○时,求证点G为线段EF的中点;
⑵ 设AE=x, FC=y,求y关于x的函数解析式;并写出自变量的取值范围;
⑶ 如图2,将△DEF沿直线EF翻折后得△ D1EF,当EF=时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由。
2、已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.
3、如图,已知直线l的解析式为y=-x+6,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线n从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l,直线n与y轴、x轴分别相交于C、D两点,线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S,当直线n与直线l重合时,运动结束.
(1)求A、B两点的坐标;
(2)求S与t的函数关系式及自变量t的取值范围;
(3)直线n在运动过程中,
①当t为何值时,半圆与直线l相切?
②是否存在这样的t值,使得半圆面积S=S梯形ABCD?若存在,求出t值,若不存在,说明理由.
4、如图①,在平面直角坐标系中,抛物线L1:y=x 2+c与x轴交于B、C两点,与y轴交于点A,且△ABC是等腰直角三角形.
(1)求c的值;
(2)如图②,将△ABC绕点B逆时针方向旋转90°,得△A′BC′,然后将抛物线L1平移,使它的顶点落在点C′ 处,得抛物线L2,它与y轴相交于点D,连接DC′,试判断四边形BA′DC′ 的形状,并说明理由;
(3)将抛物线L2沿直线BC′ 向上或向下平移,记此时抛物线的顶点为C″,它与y轴的交点为D′,过点C″ 作C″A″∥C′A′,交直线A′B于点A″ .是否存在这样的点C″,使得△A″C″D′ 是一个含有30°内角的三角形?若存在,求出点C″ 的坐标;若不存在,请说明理由.
一位打破世界纪录的举重运动员说:“我举得起世界纪录,但举不起我平时流下的汗水。”原来那世界纪录是由那点滴的汗水撑起来的。
一位世界短跑冠军说:“我用了十年的训练才仅仅加快了1秒。”原来那一秒之瞬间是用十年的辛苦支撑起来的。
由此我们应该明白:能支撑起世界奇迹的,其实正是它同样惊人的平凡与简单。只要把平凡做到了极致就是不平凡,而把简单做到了尽头也就拥有了不简单!
A
B
C
D
P
Q
E
A
B
C
D
(备用图2)
A
B
C
D
(备用图1)
我的座右铭是“信自己”。它一直陪我走过了九年,激励着我不断进步。每当我遇到困难、挫折,每当我迎接一次新的挑战,我都会想起它,用它来鼓励自己,因此每次我总能充满信心的克服困难,战胜挑战。
是的,一个人无论做什么,都要对自己充满信心,If you think you can ,you kan.只要相信自己,抛开一切顾虑,迎难而上,一定会取得成功。相反,总是怀疑自己能力,畏手畏脚,不敢去做,遇到困难、挫折便打退堂鼓,一辈子也不会成功。只能越来越不相信自己,永远生活在失败的阴影中。
B
-1
A
O
x
C
-1
1
1
y
B
A
D
C
B
A
D
C
(备用图)
x
A
C
D
E
F
B
O
Q
P
y
B
O(D)
y
x
F(C)
E(A)
O
y
x
F
E
图1
图2
备用图
y
B
C
y
T
A
C
B
O
x
O
T
A
x
O
x
y
A
D
C
n
l
B
P
O
x
y
A
D
C
n
l
B
P
E
F
备用图
O
A
B
y
x
C
图①
O
A
B
y
x
C
A′
C′
备用图
O
A
B
y
D
x
C
A′
C′
图②