A B C D D [当x>0时,f′(x)>0,当x<0时,f′(x)<0,所以函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,对照图象,应选D.] 4.已知函数f(x)的导函数y=f′(x)的图象如图所示,则函数f(x)的单调递增区间是________. (-1,2)和(4,+∞) [由y=f′(x)的图象及导数的符号与函数单调性的关系可得y=f(x)的大致图象如图所示.所以函数f(x)的单调递增区间是(-1,2)和(4,+∞). ] 类型1 导函数与原函数的关联图象 【例1】 (1)设函数f(x)在定义域内可导,f(x)的图象如图所示,则导函数f′(x)的图象可能为( )
A B C D (2)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是( )
A B C D (1)D (2)B [(1)由f(x)的图象可知,y=f(x)在(-∞,0)上是增函数,因此在x<0时,有f′(x)>0(即全部在x轴上方),故排除A,C.从原函数图象上可以看出,在区间(0,x1)上原函数是增函数,f′(x)>0;在区间(x1,x2)上原函数是减函数,f′(x)<0;在区间(x2,+∞)上原函数是增函数,f′(x)>0,故排除B.故选D. (2)法一:由函数y=f(x)的导函数y=f′(x)的图象自左到右先增后减,可知函数y=f(x)图象的切线的斜率自左到右先增大后减小. 法二:由于f′(x)>0恒成立,则根据导数符号和函数单调性的关系可知,f(x)单调递增,即图象从左至右上升.四个图象都满足. 由于当x>0时,f′(x)>0且越来越小,则函数值增加得越来越慢,图象呈现上凸状;当x<0时,f′(x)>0且越来越大,故函数值增加得越来越快,图象呈现下凸状,可以判断B正确.故选B.] 研究函数图象与其导函数图象之间的关系的着手点 研究一个函数图象与其导函数图象之间的关系时,注意抓住各自的关键要素.对于原函数,要注意其图象在哪个区间内单调递增、在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零、在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致. [跟进训练] 1.已知y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是( )