湖北省洪湖市四校2011-2012学年高二下学期期中联合考试数学(文)试题

文档属性

名称 湖北省洪湖市四校2011-2012学年高二下学期期中联合考试数学(文)试题
格式 zip
文件大小 215.1KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2012-04-17 21:11:43

图片预览

文档简介

命题人:彭寿兵 审题人:侯志国
一、选择题 (每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.)
1、命题“若,则”以及它的逆命题,否命题和逆否命题中,真命题的个数是( )
A、0 B、2 C、3 D、4
2、“”是方程“表示双曲线”的( )
A.必要不充分条件 B.充分不必要条件 C.充要条件 D.都不是
3、已知命题,则,那么“”是( )
A、若,则 B、若,则不一定有
C、若,则 D、若,则
4、若双曲线的离心率为2,则双曲线的渐近线方程为( )
A. B. C. D.
5、.若双曲线和椭圆的离心率互为倒
数,则以、、为边长的三角形是( )
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
6、是椭圆的两个焦点,为椭圆上一点,且∠,则Δ的面积为( )
A. B. C. D.
7、设是抛物线的焦点,是该抛物线上的动点,则线段中点的轨迹方程是( )
(A) (B) (C) (D)
8、若函数的图象的顶点在第四象限,则函数的图象是( )
9、落在平静水面上的石头,使水面产生同心圆形波纹,在持续的一段时间内,若最外一圈的半径(单位:米)与时间(单位:秒)的函数关系是,则在2秒末扰动水面面积的变化率为( )
A. B. C. D.
10、已知函数 ,则的图象在与轴交点处的切线与两坐标轴围成的图形的面积为( )
A.1 B. C. D.
二、填空题 (本大题共7小题,每小题5分,共35分,把答案填在题中横线上.)
11、命题“”的否定是 .
12、用“充分、必要、充要”填空:
(1)为真命题是为真命题的 条件;
(2)为假命题是为真命题的 条件;
13、椭圆的离心率为,则的值为 。
14、若直线与双曲线始终有公共点,则取值范围是 。
15、抛物线形拱桥,当水面离拱顶2米时,水面宽4米,若水面下降1米,则水面宽度
为 米。
16、、若对于任意的,有,则此函数解析式为 。
17、下列关于圆锥曲线的命题:
① 设A,B为两个定点,若,则动点P的轨迹为双曲线;
② 设A,B为两个定点,若动点P满足,且,则的最大值为8;
③ 方程的两根可分别作椭圆和双曲线的离心率;
④ 双曲线与椭圆有相同的焦点。
其中真命题的序号 (写出所有真命题的序号)。
三、解答题(本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.)
18、(本大题满分12分)已知命题p:方程表示焦点在y轴上的椭圆;命题q:双曲线的离心率,若p、q有且只有一个为真,求m的取值范围。
19、(本大题满分13分)平面内与两定点、连线的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆或双曲线。求曲线的方程,并讨论的形状与值的关系。
20、(本大题满分13分)已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。
(本大题满分13分)已知直线为曲线在点处的切线,直线是该曲线的另一条切线,且。
求直线和的方程。
求直线、与x轴围成的三角形的面积。
22、(本大题满分14分)设点为平面直角坐标系中的一个动点(其中O为坐标原点),点P到定点的距离比点P到轴的距离大。
(1)求点P的轨迹方程。
(2)若直线与点P的轨迹相交于A、B两点,且,求的值。
(3)设点P的轨迹是曲线C,点是曲线C上的一点,求以Q为切点的曲线C 的切线方程。
2011--2012学年度第二学期洪湖高中三校期中联考
高二数学试卷(文)参考答案
选择题
1——5 BABBB 6——10CCABD
填空题
解答题
19、解:设动点为,其坐标为,
当时,由条件可得,即.
又、的坐标满足,
故依题意,曲线的方程为.
当时,曲线的方程为,是焦点在轴上的椭圆;
当时,曲线的方程为,是圆点在原点的圆;
当时,曲线的方程为,是焦点在轴上的椭圆;
当时,曲线的方程为,是焦点在轴上的双曲线.
解:
同课章节目录