2.2 数轴(1)
教学目标:
1.知识与技能:了解数轴的概念,如何画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴都有唯一的点与之对应。
2.过程与方法:通过现实生活中的例子,从直观认识到理性认识,从而建立数概念;通过学习,初步体会对应的思想、数形结合的思想。
3.情感态度与价值观:感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学重点:
初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有 理数。
教学难点:
正确理解有理数与数轴上点的对应关系。
教学准备:彩色粉笔、三角板、温度计
教学过程:
一、复习引入:
1.有理数包括哪些数?0是正数还是负数?
2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?
数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。
演示从温度计抽象成数轴,激发学生学习兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程。
二、讲授新课:
1.请学生阅读新课第22―23页,思考并讨论:
①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。
②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数?
④表示+2的点在什么位置?表示―3的点在什么位置?
⑤原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数?
2.数轴的画法:
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)
第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,…,从原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,…。
3.数轴的定义:
规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
三.例题;
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,,+3.5 (2)―5,0,+5,15,20;(3)―1500,―500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;
(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。
解答:观察数轴易知: (1)有最小的正整数,它是1,没有最大的正整数;
(2)没有最小的负整数,有最大的负整数,它是-1。
四.课堂练习: 教科书P9:1,2,3。
五、课堂小结:
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
六、课外作业:教科书P14:2,3
板书设计:
1.2.2 数轴(2)
教学目标:
1.知识与技能:使学生进一步理解有理数与数轴上的点的对应关系,能在数轴上由数找点、由点读数
2.过程与方法:通过现实生活中的例子,从直观认识到理性认识,从而建立数轴概念;通过学习,初步体会对应的思想、数形结合的思想。
3.情感态度与价值观:会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。
教学重点:
会比较有理数的大小。
教学难点:
如何比较两个负数(尤其是两个负分数)的大小。
教学准备:彩色粉笔、三角板、温度计
教学过程:
一、复习引入:
1.将 ―5、2.5、、―4、3.25、、―4、0、1各数用数轴上的点表示出来。
2.下面数轴上的点A、B、C、D、E分别表示什么数?
3.用“<”或“>”填空:(简单复习小学有关比较正整数、正分数、正小数的大小的知识)25 17;0.9 0.85;3.7 2.9; ; 。
二、讲授新课:
观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数,右边的数总比左边的数大。 进一步观察数轴,发现所有的负数都在“0”的左边,所有的正数都在“0”的右边,这说明什么?
由学生归纳出:正数都大于0;负数都小于0;正数大于一切负数。
三.例题;
例1:比较―3,0,2的大小。
分析一:先在数轴上分别找到表示―3、0、2的点,由“右边的数总比左边的数大”得到―3<0<2; 分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出 ―3<0<2。
例2:把下列各组数用“<”号连接起来.
(1) ―10, 2,―14; (2) ―100,0,0.01; (3) ,―4.75,3.75。
解:(1) ―14<―10<2; (2) ―100<0<0.01; (3)―4.75<3.75<。
说明:按题意用“<”号连接,解题中不能用“>”号连接,否则与题意不符,更不能把“<”与“>”混用,如第(1)小题不能写成“―10<2>―14”或者写成“2>―14<―10”的形式。
例3: 将有理数3,0,,―4按从小到大顺序排列,用“<”号连接起来。
解:正数<3,由正、负数大小比较法则,得―4<0<<3。
四.课堂练习: 比较下列各数的大小: ―1.3,0.3,―3,―5 .
五、课堂小结:
比较有理数大小法则是:在数轴上表示的两个数,右边的数总比左边的数大。根据法则先在同一个数轴上表示出同一组数的位置,然后用“<”号连接,这种方法比较直观,但画图表示数较麻烦。另一种方法是利用数轴上数的位置得出比较大小规律,即正数都大于0,负数都小于0,正数大于一切负数,则比较更方便些。
课外作业:教科书P14——6
板书设计: