中考数学二轮专题《动态问题》

文档属性

名称 中考数学二轮专题《动态问题》
格式 zip
文件大小 171.1KB
资源类型 教案
版本资源
科目 数学
更新时间 2012-04-18 20:40:58

图片预览

文档简介

中考数学专题复习----动态问题
一、专题概述
动态问题就是在三角形、矩形、梯形等一些几何图形上设计一个或几个动点,并对这些点在运动变化的过程中相伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究考察.问题常常集几何、代数知识于一体,数形结合,有较强的综合性.运动型问题通常有直线运动、曲线运动、转动和滚动等.
解决运动型问题需要用运动与变化的眼光去观察和研究图形,把握动点运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量、不变关系或特殊关系.尽管一些试题大多属于静态的知识和方法,然而,这些试题中常常渗透着运动与变化的思想方法,需要用化“动态”为“静态”、“变化”为“不变”去研究和解决,.
动态问题有时把函数、方程、不等式联系起来.当一个问题是求有关图形的变量之间的关系时,通常建立函数模型或不等式模型求解;当求图形之间的特殊位置关系和一些特殊的值时,通常建立方程模型去求解.
三、典例剖析
(一)点动型 1.单动点型
例1 如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.
(1)记△ODE的面积为S,求S与的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.
2.双动点型
例2 如图,在RtAABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BBl∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB1于F,G是EF中点,连结DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>时,连结C′C,设四边形ACC′A ′的面积为S,求S关于t的函数关系式;
②当线段A ′C ′与射线BB,有公共点时,求t的取值范围(写出答案即可).
课后练习
1.如图,已知是⊙O的直径,把为的直角三角板的一条直角边放在直线上,斜边与⊙O交于点,点与点重合.将三角板沿方向平移,使得点与点重合为止.设,则的取值范围是( )
A. B.C. D.
2.如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为 (  )
A.5:3 B.3:5 C.4:3 D.3:4
3.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线经过点B。
(1)写出点B的坐标;
(2)求抛物线的解析式;
(3)若三角板ABC从点C开始以每秒1个单位长度的速度向轴正方向平移,求点A落在抛物线上时所用的时间,并求三角板在平移过程扫过的面积。
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
4.如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
中考数学专题复习----动态问题
一、专题概述(同上)
二、典例剖析
(一)线动型
例1. 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示-,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
(二)面动型
例2.刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,
∠B=90°,∠A=30°,BC=6cm;图②中,∠D=90°,∠E=45°,DE=4 cm.图③是刘卫同学所
做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方
向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,刘卫同学发现:F、C两点间的距离逐渐     .
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,F、C的连线与AB平行
问题②:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、FC、BC的长度为三边长的三角形是直角三角形
问题③:在△DEF的移动过程中,是否存在某个位置,使得∠FCD=15° 如果存在,
求出AD的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
课后练习
1. 如图,在矩形ABCD中, AB=4,BC=6,当直角三角板MPN 的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是(     )
2. 如图,内接于⊙O,,是⊙O上与点关于圆心成中心
对称的点,是边上一点,连结.已知,,是线段上一动点,连结并延长交四边形的一边于点,且满足,则的值为_________.
3. 如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120.
(1)求tan∠OAB的值 (2)计算S
(3)⊙O上一动点P从A点出发,沿逆时针方向运动,当S=S时,求P点所经过的弧长(不考虑点P与点B重合的情形)
4.如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
C
D
B
A
E
O
A
B
C
D
(备用图1)
A
B
C
D
(备用图2)
Q
A
B
C
D
l
M
P
(第4题)
E
M
Q
D
C
B
P
N
A
x
y
O
4
6
3
A
x
y
O
2.25
6
3
D
x
y
O
3
6
4
C
2.25
x
y
O
6
3
B
A
B
C
D
(备用图1)
A
B
C
D
(备用图2)
Q
A
B
C
D
l
M
P
(第4题)
E
同课章节目录