§1.2.2复合函数的求导法则
教学目标 理解并掌握复合函数的求导法则.
教学重点 复合函数的求导方法:复合函数对自变量的导数,等于已知函数对中间变量的导数乘以中间变量对自变量的导数之积.
教学难点 正确分解复合函数的复合过程,做到不漏,不重,熟练,正确.
一.创设情景
(一)基本初等函数的导数公式表
函数 导数
(二)导数的运算法则
导数运算法则
1.2.3.
(2)推论:
(常数与函数的积的导数,等于常数乘函数的导数)
二.新课讲授
复合函数的概念 一般地,对于两个函数和,如果通过变量,可以表示成的函数,那么称这个函数为函数和的复合函数,记作。
复合函数的导数 复合函数的导数和函数和的导数间的关系为,即对的导数等于对的导数与对的导数的乘积.
若,则
三.典例分析
例1求下列函数的导数:
(1);(2);
(3)(其中均为常数).
解:(1)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
(2)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
(3)函数可以看作函数和的复合函数。根据复合函数求导法则有
=。
例2求的导数.
解:
【点评】
求复合函数的导数,关键在于搞清楚复合函数的结构,明确复合次数,由外层向内层逐层求导,直到关于自变量求导,同时应注意不能遗漏求导环节并及时化简计算结果.
例3求的导数.
解:
,
【点评】本题练习商的导数和复合函数的导数.求导数后要予以化简整理.
例4求y =sin4x +cos 4x的导数.
【解法一】y =sin 4x +cos 4x=(sin2x +cos2x)2-2sin2cos2x=1-sin22 x
=1-(1-cos 4 x)=+cos 4 x.y′=-sin 4 x.
【解法二】y′=(sin 4 x)′+(cos 4 x)′=4 sin 3 x(sin x)′+4 cos 3x (cos x)′
=4 sin 3 x cos x +4 cos 3 x (-sin x)=4 sin x cos x (sin 2 x -cos 2 x)
=-2 sin 2 x cos 2 x=-sin 4 x
【点评】
解法一是先化简变形,简化求导数运算,要注意变形准确.解法二是利用复合函数求导数,应注意不漏步.
例5曲线y =x(x +1)(2-x)有两条平行于直线y =x的切线,求此二切线之间的距离.
【解】y =-x 3 +x 2 +2 x y′=-3 x 2+2 x +2
令y′=1即3 x2-2 x -1=0,解得 x =-或x =1.
于是切点为P(1,2),Q(-,-),
过点P的切线方程为,y -2=x -1即 x -y +1=0.
显然两切线间的距离等于点Q 到此切线的距离,故所求距离为
=.
四.课堂练习
1.求下列函数的导数 (1) y =sinx3+sin33x;(2);(3)
2.求的导数
附件1:律师事务所反盗版维权声明
附件2:独家资源交换签约学校名录(放大查看)
学校名录参见:http://www.21世纪教育网/wxt/list.aspx ClassID=3060(共16张PPT)
1.2.2
基本初等函数的导数公式及导数的运算法则
常见函数的导数公式:
公式1:
公式2:
公式3:
公式4:
还有必要建立求导法则,若两个函数的导数存在,如何求这两个函数的和,差,积,商的导数呢?
由定义求导数(三步法)
步骤:
注意:
若u=u(x),v=v(x)在x处可导,则
1.和(或差)的导数
法则1 两个函数的和(或差)的导数,等于这两个函数的导数
的和(或差),即
根据导数的定义,可以推出可导函数四则运算的求导法则
1.和(或差)的导数
2.积的导数
法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即
3.商的导数
法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即
1). 求函数y=(3x-2)2的导数
2).又如我们知道函数y=1/x2的导数是y’=- 2/x 3
把平方式展开,利用导数的四则运算法则求导.
是否还有用其它的办法求导呢
那么函数y=1/(3x-2)2的导数又是什么呢
想一想
问题:指出下列函数的复合关系
解:
复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间关系为
如:求函数y=(3x-2)2的导数,
注: y对x的导数等于y对u的导数与u对x的导数
的乘积.
令y=u2,u=3x-2,
则 从而
函数 的导数是( )
A