2021年北师大版九年级数学上册《1.1菱形的性质与判定》暑假自主学习
能力提升训练(附答案)
1.菱形的周长为8,一个内角为120°,则较短的对角线长为( )
A.4 B.2 C.2 D.1
2.如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为( )
A. B. C. D.
3.如图,菱形ABCD的边AB的垂直平分线交AB于点E,交AC于点F,连接DF.当∠BAD=100°时,则∠CDF=( )
A.15° B.30° C.40° D.50°
4.如图,菱形ABCD中,∠D=135°,BE⊥CD于E,交AC于F,FG⊥BC于G.若△BFG的周长为4,则菱形ABCD的面积为( )
A.4 B.8 C.16 D.16
5.若菱形的两条对角线分别长8、6,则菱形的面积为( )
A.48 B.24 C.14 D.12
6.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )
A.5cm B.10cm C.20cm D.40cm
7.如图,在?ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是菱形,这个条件是( )
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
8.下列条件中,能判断四边形是菱形的是( )
A.对角线互相垂直且相等的四边形 B.对角线互相垂直的四边形
C.对角线相等的平行四边形 D.对角线互相平分且垂直的四边形
9.如图:在四边形ABCD中,E是AB上的一点,△ADE和△BCE都是等边三角形,点P、Q、M、N分别为AB、BC、CD、DA的中点,则四边形MNPQ是( )
A.等腰梯形 B.矩形 C.菱形 D.正方形
10.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是( )
A.AB=BE B.BE⊥DC C.∠ABE=90° D.BE平分∠DBC
11.两张全等的矩形纸片ABCD,AECF按如图方式交叉叠放在一起,AB=AF,AE=BC.若AB=1,BC=3,则图中重叠(阴影)部分的面积为( )
A.2 B. C. D.
12.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为( )
A.2 B.3 C.4 D.5
13.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
14.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为( )
A.10 B.12 C.16 D.18
15.将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为( )
A.1 B.2 C.2 D.4
16.如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=8,BO=DO=6,点P为线段AC上的一个动点.
(1)填空:AD=CD= .
(2)过点P分别作PM⊥AD于M点,作PH⊥DC于H点.连接PB,在点P运动过程中,PM+PH+PB的最小值为 .
17.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2= .
18.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
19.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
20.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.
21.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.
(1)求证:四边形BNDM是菱形;
(2)若BD=24,MN=10,求菱形BNDM的周长.
22.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.
(1)证明平行四边形ECFG是菱形;
(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,
①求证:△DGC≌△BGE;
②求∠BDG的度数;
(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.
参考答案
1.解:如图,在菱形ABCD中,∠BAD=120°,
则∠B+∠BAD=180°,
∴∠B=60°,
∵菱形ABCD的周长为8,
∴AB=BC=CD=DA=2,
∴△ABC为等边三角形,
∴AC=AB=2,
故选:C.
2.解:连接BD,
∵四边形ABCD是菱形,
∴AB=AD,∠ADB=∠ADC=60°,
∴△ABD是等边三角形,
∴AD=BD,
又∵△DEF是等边三角形,
∴∠EDF=∠DEF=60°,
又∵∠ADB=60°,
∴∠ADE=∠BDF,
在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴AE=BF,
∵AE=t,CF=2t,
∴BF=BC﹣CF=5﹣2t,
∴t=5﹣2t
∴t=,
故选:D.
3.解:如图,连接BF,
∵四边形ABCD是菱形,
∴CD=BC,∠DCF=∠BCF,
在△BCF和△DCF中,
∵,
∴△BCF≌△DCF(SAS)
∴∠CBF=∠CDF
∵FE垂直平分AB,∠BAF=×100°=50°
∴∠ABF=∠BAF=50°
∵∠ABC=180°﹣100°=80°,∠CBF=80°﹣50°=30°
∴∠CDF=30°.
故选:B.
4.解:∵菱形ABCD中,∠D=135°,
∴∠BCD=45°,
∵BE⊥CD于E,FG⊥BC于G,
∴△BFG与△BEC是等腰直角三角形,
∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
CF=CF,
∴△CGF≌△CEF(AAS),
∴FG=FE,CG=CE,
设BG=FG=EF=x,
∴BF=x,
∵△BFG的周长为4,
∴x+x+x=4,
∴x=4﹣2,
∴BE=2,
∴BC=BE=4,
∴菱形ABCD的面积=4×2=8,
故选:B.
5.解:∵菱形的两条对角线分别长8、6,
∴S=×8×6=24
故选:B.
6.解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AO=OC,
∵AM=BM,
∴BC=2MO=2×5cm=10cm,
即AB=BC=CD=AD=10cm,
即菱形ABCD的周长为40cm,
故选:D.
7.证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵BD⊥AC,
∴MN⊥AC,
∴四边形AMCN是菱形.
故选:C.
8.解:A、对角线互相垂直相等的四边形不一定是菱形,此选项错误;
B、对角线互相垂直的四边形不一定是菱形,此选项错误;
C、对角线相等的平行四边形也可能是矩形,此选项错误;
D、对角线互相平分且垂直的四边形是菱形,此选项正确;
故选:D.
9.解:连接BD、AC;
∵△ADE、△ECB是等边三角形,
∴AE=DE,EC=BE,∠AED=∠BEC=60°;
∴∠AEC=∠DEB=120°;
∴△AEC≌△DEB(SAS);
∴AC=BD;
∵M、N是CD、AD的中点,
∴MN是△ACD的中位线,即MN=AC;
同理可证得:NP=DB,QP=AC,MQ=BD;
∴MN=NP=PQ=MQ,
∴四边形NPQM是菱形;
故选:C.
10.解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴?DBCE为矩形,故本选项错误;
B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;
C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;
D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.
故选:A.
11.解:设BC交AE于G,AD交CF于H,如图所示:
∵四边形ABCD、四边形AECF是全等的矩形,
∴AB=CE,∠B=∠E=90°,AD∥BC,AE∥CF,
∴四边形AGCH是平行四边形,
在△ABG和△CEG中,,
∴△ABG≌△CEG(AAS),
∴AG=CG,
∴四边形AGCH是菱形,
设AG=CG=x,则BG=BC﹣CG=3﹣x,
在Rt△ABG中,由勾股定理得:12+(3﹣x)2=x2,
解得:x=,
∴CG=,
∴菱形AGCH的面积=CG×AB=×1=,
即图中重叠(阴影)部分的面积为;
故选:C.
12.解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为4cm2,
∴AB?OC=×2×OC=4,
解得OC=4cm.
故选:C.
13.解:∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是菱形,正确;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN=BC,GN=AD,
∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.
综上所述,①②③共3个正确.
故选:C.
14.解:如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF=BF=6,
∴OA===8,
∴AE=2OA=16;
故选:C.
15.解:∵四边形AECF是菱形,AB=3,
∴假设BE=x,则AE=3﹣x,CE=3﹣x,
∵四边形AECF是菱形,
∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,
2BE=CE,
∴CE=2x,
∴2x=3﹣x,
解得:x=1,
∴CE=2,利用勾股定理得出:
BC2+BE2=EC2,
BC===,
又∵AE=AB﹣BE=3﹣1=2,
则菱形的面积是:AE?BC=2.
故选:C.
16.解:(1)∵AC⊥BD于点O,
∴△AOD为直角三角形.
∴AD===10.
∵AC⊥BD于点O,AO=CO,
∴CD=AD=10.
故答案为:10;
(2)如图1所示:连接PD.
∵S△ADP+S△CDP=S△ADC,
∴AD?PM+DC?PH=AC?OD,即×10×PM+×10×PH=×16×6.
∴10×(PM+PH)=16×6.
∴PM+PH==,
∴当PB最短时,PM+PH+PB有最小值,
∵由垂线段最短可知:当BP⊥AC时,PB最短.
∴当点P与点O重合时,PM+PH+PB有最小,最小值=+6=.
故答案为:10,.
17.解:如右图,连接EF,FG,GH,EH,
∵E、H分别是AB、DA的中点,
∴EH是△ABD的中位线,
∴EH=BD=3,
同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,
∴EF=GH=AC=3,FG=BD=3,
∴EH=EF=GH=FG=3,
∴四边形EFGH为菱形,
∴EG⊥HF,且垂足为O,
∴EG=2OE,FH=2OH,
在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,
等式两边同时乘以4得:4OE2+4OH2=9×4=36,
∴(2OE)2+(2OH)2=36,
即EG2+FH2=36.
故答案为:36.
18.(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
19.(1)证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形;
(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,
∴AD=DB=CD=6.
∴AB=12,由勾股定理得.
∵四边形DBCE是平行四边形,
∴DE=BC=6.
∴.
20.(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形,
又∵BE=EF,
∴四边形BCFE是菱形;
(2)解:∵∠BEF=120°,
∴∠EBC=60°,
∴△EBC是等边三角形,
∴BE=BC=CE=6,
过点E作EG⊥BC于点G,
∴EG=3,
∴S菱形BCFE=BC?EG=6×3=18.
21.(1)证明:∵AD∥BC,
∴∠DMO=∠BNO,
∵MN是对角线BD的垂直平分线,
∴OB=OD,MN⊥BD,
在△MOD和△NOB中,,
∴△MOD≌△NOB(AAS),
∴OM=ON,
∵OB=OD,
∴四边形BNDM是平行四边形,
∵MN⊥BD,
∴四边形BNDM是菱形;
(2)解:∵四边形BNDM是菱形,BD=24,MN=10,
∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,
在Rt△BOM中,由勾股定理得:BM===13,
∴菱形BNDM的周长=4BM=4×13=52.
22.解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)①∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△DGC≌△BGE(SAS);
②∵△DGC≌△BGE,
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)方法一:如图3中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=8,AD=14,
∴BD=2,
∴DM=BD=.
方法二:过M作MH⊥DF于H,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形,
∴∠CEF=45°,
∴∠AEB=∠CEF=45°,
∴BE=AB=8,
∴CE=CF=14﹣8=6,
∵MH∥CE,EM=FM,
∴CH=FH=CF=3,
∴MH=CE=3,
∴DH=11,
∴DM==.