2021-2022学年青岛新版八年级上册数学《第1章 全等三角形》单元测试卷(word版含解析)

文档属性

名称 2021-2022学年青岛新版八年级上册数学《第1章 全等三角形》单元测试卷(word版含解析)
格式 zip
文件大小 279.5KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2021-07-05 08:40:14

图片预览

文档简介

2021-2022学年青岛新版八年级上册数学《第1章
全等三角形》单元测试卷
一.选择题
1.如图,下列条件中,不能证明△ABD≌△ACD的是(  )
A.BD=DC,AB=AC
B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.∠B=∠C,BD=DC
2.使两个直角三角形全等的条件是(  )
A.一个锐角对应相等
B.两个锐角对应相等
C.一条边对应相等
D.斜边及一条直角边对应相等
3.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:
(1)△ABD≌△ACD;
(2)AB=AC;
(3)∠B=∠C;
(4)AD是△ABC的一条角平分线.
其中正确的有(  )
A.1个
B.2个
C.3个
D.4个
4.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为(  )
A.8
B.7
C.6
D.5
5.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是(  )
A.(6,0)
B.(4,0)
C.(4,﹣2)
D.(4,﹣3)
6.已知△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,有下列4个结论:①BC=C′B′;②AC=A′B′;③AB=A′B′;④∠ACB=∠A′B′C′,其中正确的结论有(  )
A.1个
B.2个
C.3个
D.4个
7.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为(  )
A.45°
B.60°
C.90°
D.100°
8.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是(  )
A.90°
B.120°
C.135°
D.180°
9.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是(  )
A.ASA
B.SAS
C.AAS
D.SSS
10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④AD平分∠CDE;⑤S△ABD:S△ACD=AB:AC,其中正确的有(  )
A.5个
B.4个
C.3个
D.2个
二.填空题
11.如图所示的方格中,∠1+∠2+∠3= 
 度.
12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 
 .
13.如图,在ABC中,AD⊥BC,垂足为D,BF=AC,CD=DF,证明图中两个直角三角形全等的依据是定理 
 .
14.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是 
 .
15.如图,在平面直角坐标系中,△AOB≌△COD,则点D的坐标是 
 .
16.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD= 
 °.
17.如图,∠1=∠2.
(1)当BC=BD时,△ABC≌△ABD的依据是 
 ;
(2)当∠3=∠4时,△ABC≌△ABD的依据是 
 .
18.如图,已知∠1=∠2,请你添加一个条件 
 ,使得△ABD≌△ACD.(添一个即可)
19.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动 
 分钟后△CAP与△PQB全等.
20.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2cm,BE=0.5cm,则DE= 
 cm.
三.解答题
21.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)△CDE是不是直角三角形?并说明理由.
22.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.
23.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.
24.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.
如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.
下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′
(1)其中,符合要求的条件是 
 .(直接写出编号)
(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.
25.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.
26.如图,太阳光线AC与A′C′是平行的,同一时刻两根高度相同的木杆在太阳光照射下的影子一样长吗?说说你的理由.
27.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)
参考答案与试题解析
一.选择题
1.解:A、依据SSS可知△ABD≌△ACD,故A不符合要求;
B、依据SAS可知△ABD≌△ACD,故B不符合要求;
C、依据AAS可知△ABD≌△ACD,故C不符合要求;
D、依据SSA可知△ABD≌△ACD,故D符合要求.
故选:D.
2.解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故本选项错误;
B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故本选项错误;
C、一条边对应相等,再加一组直角相等才能得出两三角形全等,故本选项错误;
D、当两个直角三角形的两直角边对应相等时,由ASA可以判定它们全等;当一直角边与一斜边对应相等时,由HL判定它们全等,故本选项正确;
故选:D.
3.解:∵AD=AD、∠ADB=∠ADC、BD=CD
∴(1)△ABD≌△ACD正确;
∴(2)AB=AC正确;
(3)∠B=∠C正确;
∠BAD=∠CAD
∴(4)AD是△ABC的角平分线.
故选:D.
4.解:∵AD是∠BAC的平分线,
∴∠EAD=∠CAD
在△ADE和△ADC中,

∴△ADE≌△ADC(SAS),
∴ED=CD,
∴BC=BD+CD=DE+BD=5,
∴△BDE的周长=BE+BD+ED=(6﹣4)+5=7.
故选:B.
5.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).
故选:D.
6.解:如图,∵△ABC≌△A′C′B′,∠B与∠C′,∠C与∠B′是对应角,
∴BC=C′B′,AC=A′B′,∠ACB=∠A′B′C′,
∴①②④共3个正确的结论.
AB与A′B′不是对应边,不正确.
故选:C.
7.解:∵在△ABC和△AED中,
∴△ABC≌△AED(SAS),
∴∠1=∠AED,
∵∠AED+∠2=90°,
∴∠1+∠2=90°,
故选:C.
8.解:如图所示:
由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,
∵三个全等三角形,
∴∠4+∠9+∠6=180°,
又∵∠5+∠7+∠8=180°,
∴∠1+∠2+∠3+180°+180°=540°,
∴∠1+∠2+∠3的度数是180°.
故选:D.
9.解:画一个三角形A′B′C′,使∠A′=∠A,A′B′=AB,∠B′=∠B,
符合全等三角形的判定定理ASA,
故选:A.
10.解:①正确,因为角平分线上的点到两边的距离相等知;
②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;
③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;
④正确,因为由△ADC≌△ADE可知,∠ADC=∠ADE,所以AD平分∠CDE;
⑤正确,因为CD=ED,△ABD和△ACD的高相等,所以S△ABD:S△ACD=AB:AC.
所以正确的有五个,故选:A.
二.填空题
11.解:如图,根据网格结构可知,
在△ABC与△ADE中,,
∴△ABC≌△EDA(SSS),
∴∠1=∠DAE,
∴∠1+∠3=∠DAE+∠3=90°,
又∵AD=DF,AD⊥DF,
∴△ADF是等腰直角三角形,
∴∠2=45°,
∴∠1+∠2+∠3=90°+45°=135°.
故答案为:135.
12.解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
13.∵AD⊥BC,
∴∠ADC=∠BDF=90°,
在Rt△ACD和Rt△BFD中,

∴Rt△ACD≌Rt△BFD(HL).
故答案为:HL.
14.解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,
图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;
乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;
丙:符合AAS定理,能推出两三角形全等;
故答案为:丙.
15.解:∵△AOB≌△COD,
∴OD=OB,
∴点D的坐标是(﹣2,0).
故答案为:(﹣2,0).
16.解:∵△ABC≌△ADE,
∴∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠BAD=∠EAC,
∵∠EAC=35°,
∴∠BAD=35°,
故答案为:35.
17.解:(1)∵∠1=∠2,AB=AB,BC=BD
∴△ABC≌△ABD(SAS);
(2)∵∠1=∠2,AB=AB,∠3=∠4
∴△ABC≌△ABD(ASA).
故答案为SAS、ASA.
18.解:添加AB=AC,
∵在△ABD和△ACD中,
∴△ABD≌△ACD(SAS),
故答案为:AB=AC.
19.解:∵CA⊥AB于A,DB⊥AB于B,
∴∠A=∠B=90°,
设运动x分钟后△CAP与△PQB全等;
则BP=xm,BQ=2xm,则AP=(12﹣x)m,
分两种情况:
①若BP=AC,则x=4,
AP=12﹣4=8,BQ=8,AP=BQ,
∴△CAP≌△PBQ;
②若BP=AP,则12﹣x=x,
解得:x=6,BQ=12≠AC,
此时△CAP与△PQB不全等;
综上所述:运动4分钟后△CAP与△PQB全等;
故答案为:4.
20.解:∵BE⊥CE,AD⊥CE
∴∠E=∠ADC=90°
∴∠DAC+∠DCA=90°
∵∠ACB=90°
∴∠BCE+∠DCA=90°
∴∠DAC=∠BCE
在△ACD和△CBE中,

∴△ACD≌△CBE
∴BE=CD=0.5(cm),EC=AD=2(cm)
DE=CE﹣CD=1.5(cm),
故答案为1.5
三.解答题
21.解:(1)全等,理由是:
∵∠1=∠2,
∴DE=CE,
在Rt△ADE和Rt△BEC中,

∴Rt△ADE≌Rt△BEC(HL);
(2)是直角三角形,理由是:
∵Rt△ADE≌Rt△BEC,
∴∠3=∠4,
∵∠3+∠5=90°,
∴∠4+∠5=90°,
∴∠DEC=90°,
∴△CDE是直角三角形.
22.证明:∵∠1=∠2,
∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,
在△ABE与△CBF中,

∴△ABE≌△CBF(SAS).
23.证明:∵AD⊥BC,
在Rt△BDF和Rt△ADC中

∴Rt△BDF≌Rt△ADC(HL)
∴∠C=∠BFD,
∵∠DBF+∠BFD=90°,
∴∠C+∠DBF=90°,
∵∠C+∠DBF+∠BEC=180°
∴∠BEC=90°,
即BE⊥AC;
24.解:(1)符合要求的条件是①②④,
故答案为:①②④;
(2)选④,
证明:连接AC、A′C′,
在△ABC与△A′B′C′中,,
∴△ABC≌△A′B′C′(SAS),
∴AC=A′C′,∠ACB=∠A′C′B′,
∵∠BCD=∠B′C′D′,
∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,
∴∠ACD=∠A′C′D′,
在△ACD和△A′C′D中,

∴△ACD≌△A′C′D′(SAS),
∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,
∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,
即∠BAD=∠B′A′D′,
∴四边形ABCD和四边形A′B′C′D′中,
AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,
∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,
∴四边形ABCD≌四边形A′B′C′D′.
25.证明:∵△ABC≌△DEC,
∴∠B=∠DEC,BC=EC,
∴∠B=∠BEC,
∴∠BEC=∠DEC,
∴CE平分∠BED.
26.解:影子一样长.
证明:
∵AB⊥BC,A′B′⊥B′C′
∴∠ABC=∠A′B′C′=90°
∵AC∥A′C′
∴∠ACB=∠A′C′B′
在△ABC和△A′B′C′中,
∴△ABC≌△A′B′C′(AAS)
∴BC=B′C′
即影子一样长.
27.解:图象如图所示,
∵∠EAC=∠ACB,
∴AD∥CB,
∵AD=BC,∠DAC=∠ACB,AC=CA,
∴△ACD≌△CAB(SAS),
∴∠ACD=∠CAB,
∴AB∥CD.