沪科版八年级上册数学课件-12.2.1 正比例函数的图象和性质 (19张PPT)

文档属性

名称 沪科版八年级上册数学课件-12.2.1 正比例函数的图象和性质 (19张PPT)
格式 ppt
文件大小 447.0KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2021-07-05 21:12:53

图片预览

文档简介

沪科版 八年级上册
12.2 一次函数
第1课时 正比例函数的图象和性质
下面问题中的变量可用怎样的函数表示?这些函数有什么共同点?
(1)圆的周长l随半径r的变化而变化;
(2)铁的密度为7.8g/cm3,铁的质量随它的体积变化而变化;
l=2πr
m=7.8V
新课导入
(3)每个练习本的厚度为0.5cm,一些练习本摞在一起的总厚度h随练习本的本数n的变化而变化;
(4)冷冻一个0度的物体,使它每分钟下降2度,物体的温度T随冷冻时间t的变化而变化.
h = 0.5n
T = -2t
在上节,遇到过这样的一些函数:
h=30t+1800;
Q=-25t+300;
y =2x;
y =-2x.
这些函数有什么共同特点?
一般地,形如 y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
其中,当b=0时,一次函数y=kx+b就成为
y=kx(k为常数,且k≠0).
一般地,形如y=kx(k是常数,且k≠0)的函数,叫做正比例函数,其中 k 叫做比例系数.
我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?
由上节可知:
正比例函数y=kx(k是常数,且k≠0)的图象是经过原点的直线,通常我们把正比例函数y=kx(k是常数,且k≠0)的图象叫做直线y=kx.
画正比例函数图象的方法:因为两点确定一条直线,所以先描出两点,再过这两点画直线。
y=x
O(0,0)
A(2,2)
例1 在同一平面直角坐标系中,画下列函数的图象:
(1)y= x;(2)y=x;(3)y=3x.
【解】列表:(为便于比较,三个函数值计算表排在一起)
如图,过两点(0, 0),(1, )画直线,得y= x的图象;
过两点(0, 0),(1, 1)画直线,得y=x的图象;
过点(0, 0),(1, 3)画直线,得y=3x的图象.
在同一直角坐标系中,画出下列函数的图象,并对它们进行比较.
1.y= x 2.y=-3x
y= x
y=-3x
O(0,0)
A(4,2)
B(2,-6)
【归纳结论】
一般地,正比例函数y=kx(k为常数,且k≠0)有下列性质:
当k>0时,y随x的增大而增大(图象是自左向右上升的);
当k<0时,y随x的增大而减小(图象是自左向右下降的).
运用新知
1.下列函数中,是正比例函数的是( )
A
2.(湖南湘西州中考)正比例函数y=x的大致图象是( )
C
3.已知y=
是正比例函数,且函数图象经过第一、三象限,求m的值.
解:根据题意得:
,解得:m=2.
随堂练习
1.下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)长为8cm的平行四边形的周长L(cm)与宽b(cm);
(2)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y(吨);
(L=2(8+b),一次函数)
(y=120-5x,一次函数)
(3)汽车每小时行40千米,行驶的路程s(km)和时间t(h);
(4)汽车以60千米/时的速度匀速行驶,行驶路程y(km)与行驶时间x(h)之间的关系式;
(5)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米).
(s=40t,正比例函数)
(y=60x,正比例函数)
(y=50+2x,一次函数)
2.已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.
解:由题意和正比例函数、一次函数的定义可知:
①当k-2≠0,2k+1=0,即k=
该函数为正比例函数;
②当k-2≠0,即k≠2时,该函数为一次函数.
1.从教材习题中选取完成练习;
2.完成练习册本课时的习题.
课后作业