河南省平顶山市2020-2021学年高二下学期期末调研考试
理科数学
考生注意:
1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数false在复平面内对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.有下列四个命题:
①若false,则false;
②若false,false,则false;
③若false,则false.
④若false,则false.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
3.“false”是“false”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.与双曲线false共焦点,且离心率为false的椭圆的标准方程为( )
A.false B.false C.false D.false
5.已知等比数列false是递增数列,若false,且false,false,false成等差数列,则false的前4项和false( )
A.4 B.40 C.4或40 D.15
6.已知抛物线false的顶点在坐标原点,准线方程为false,过其焦点false的直线false与抛物线false交于false,false两点,若直线false的斜率为1,则弦false的长为( )
A.4 B.6 C.7 D.8
7.盒中有10只螺丝钉,其中有2只是坏的,现从盒中随机地抽取4只,那么恰好有2只是坏的的概率为( )
A.false B.false C.false D.false
8.设变量false,false满足约束条件false则目标函数false的最小值为( )
A.4 B.3 C.false D.false
9.false的展开式中各项的二项式系数的和为256,则展开式中false的系数为( )
A.false B.504 C.false D.70
10.设每天去某网红景点旅游的人数(单位:万人)为随机变量false,且false,则一天中去该网红景占旅游的游客不少于1.5万人的概率为( )
参考数据:若false,则false,false,false.
A.0.97725 B.0.84135 C.0.6827 D.0.15865
11.观察下列数表,数表中的每一行从左到右,每一列从上到下均为等差数列.
1 2 3 4 …第一行
2 3 4 5 …第二行
3 4 5 6 …第三行
4 5 6 7 …第四行
… … … …
第一列 第二列 第三列 第四列
若第false行与第false列的交叉点上的数记为false,则false( )
A.210 B.399 C.400 D.420
12.已知定义在false上的函数false的导函数为false,且false,则false的最小值为( )
A.false B.false C.false D.false
二、填空题:本题共4小题,每小题5分,共20分.
13.为了解患某疾病是否与性别有关,随机地调查了50人,得到如下的false列联表:
-679451905
患该疾病
不患该疾病
总计
男
15
10
25
女
5
20
25
总计
20
30
50
则______(填“有”或“没有”)99.9%的把握认为患该疾病与性别有关.
参考公式:false,其中false.
参考数据:
三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
已知正项数列false的前false项和为false,false,且false.
(Ⅰ)求false的通项公式;
(Ⅱ)记false,求false的前false项和false.
18.(12分)
如图,在三棱柱false中,false,false,false,false.
(Ⅰ)证明:平面false平面false;
(Ⅱ)求二面角false的余弦值.
19.(12分)
某个知名品牌在某大型超市举行新品上市的抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为false,中奖可以获得300元优惠券;方案乙的中奖率为false,中奖可以获得350元优惠券;未中奖则没有优惠券.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响.
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们获得的优惠券总金额为false元,求false的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红获得优惠券的总金额的分布列,并判断他们选择何种方案抽奖,两人获得的优惠券总金额的数学期望较大.
20.(12分)
已知椭圆false:false经过点false,连接椭圆false的四个顶点得到的菱形的面积为false.
(Ⅰ)求椭圆false的标准方程.
(Ⅱ)设false为原点,直线false:false与椭圆false交于两个不同点false,false,直线false与false轴交于点false,直线false与false轴交于点false,问:false是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.
21.(12分)
已知函数false.
(Ⅰ)讨论函数false的单调性;
(Ⅱ)若函数false在false上是增函数,求实数false的取值范围.
(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系false中,曲线false的参数方程为false(false为参数),在以原点false为极点,false轴的正半轴为极轴的极坐标系中,曲线false的极坐标方程为false.
(Ⅰ)写出false的普通方程和false的直角坐标方程;
(Ⅱ)若false与false相交于false,false两点,求false的面积.
23.[选修4—5:不等式选讲](10分)
已知函数false.
(Ⅰ)若false,求不等式false的解集;
(Ⅱ)若关于false的不等式false在false上恒成立,求实数false的取值范围.
2020—2021学年第二学期高二期末调研考试
理科数学?答案
一、选择题:本题共12小题,每小题5分,共60分.
1.答案A
命题意图 本题考查复数的运算以及复数的几何意义.
解析 false,故复数false在复平面内对应的点位于第一象限.
2.答案C
命题意图 本题考查不等式的性质.
解析 ①中,若false,则false,则false,所以false,①正确;②中,当false,false时,不成立,②错;③正确;④中,由false,可得false,④正确.故选C.
3.答案A
命题意图 本题考查充分必要条件的判断和分式不等式的解法.
解析 不等式false可化为false解得false,因为false,但false
false,所以“false”是“false”的充分不必要条件.
4.答案C
命题意图 本题考查椭圆的标准方程和简单的几何性质.
解析 设椭圆的半焦距为false.由题知,椭圆的焦点坐标为false,false,所以false,再由false,可得false,所以false,则椭圆的标准方程为false.
5.答案B
命题意图 本题考査等差中项、等比数列的通项与求和.
解析 设false的公比为false,由于false,false,false成等差数列,所以false.因为false,所以false,即false,解得false(舍去),或false,所以false.
6.答案D
命题意图 本题考查抛物线的标准方程、抛物线的定义以及直线与抛物线的位置关系.
解析 依题意得,抛物线false的方程是false,直线false的方程是false.联立false消去false,得false,即false.设false,false,则false,所以false.
7.答案C
命题意图 本题考查超几何分布.
解析 设false表示取出的螺丝钉恰有false只是坏的,则false.
∴false.
8.答案D
命题意图 本题考查线性规划.
解析 由题意知,约束条件false所表示的平面区域的顶点分别为false,false,false.目标函数false可化为false,当过false点时,直线false的纵截距最大,此时false最小,将false代入目标函数可得false,故false的最小值为false.
9.答案A
命题意图 本题考查二项式定理.
解析 由题可知false,解得false.false的展开式的通项为false
false.再令false,解得false.所以展开式中false的系数为false.
10.答案B
命题意图 本题考查正态分布及其简单应用.
解析 ∵false,∴false,∴false,∴false.
11.答案C
命题意图 本题考查归纳推理和等差数列的求和.
解析 根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,由此可以推导出第false行与第false列交叉点上的数应该是false,所以false
false.
12.答案B
命题意图 本题考查导数在研究函数中的应用.
解析 由false,可知false.设false,则false
false,所以false,false.又由false,可得false,所以false.所以当false时,false,false单调递减;当false时,false,false单调递增.所以false的最小值为false.
二、填空题:本题共4小题,每小题5分,共20分.
13.答案 没有
解析 由公式得false,故没有99.9%的把握认为患该疾病与性别有关.
三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.
17.命题意图 本题考查等差数列的通项和数列的求和.
解析(Ⅰ)由false,可得数列false是以false为首项、1为公差的等差数列,
所以false,得false.
当false时,false,
当false时也符合上式,
故false的通项公式为false.
(Ⅱ)由(Ⅰ)知false,
所以false,
则false,
false,
两式相减得false
false
false,
所以false.
18.命题意图 本题考查垂直关系的证明和二面角的求解.
解析(Ⅰ)因为在三棱柱false中,false,
所以false,false.
又false,
所以false平面false.
又因为false平面false,所以平面false平面false.
(Ⅱ)如图,作false,垂足为false.
因为false平面false,平面false平面false,
所以false平面false.
由false,false,可求得false,false.
以false为坐标原点,false的方向为false轴的正方向,false的方向为false轴的正方向,建立如图所示的空间直角坐标系false,
则false,false,false,false,false.
设平面false的法向量为false,
则false,即false令false,可得false,false,
所以可取false.
又平面false的法向量可取false,
所以false,
因此二面角false的余弦值为false.
19.命题意图 本题考查随机变量的分布列与数学期望.
解析(Ⅰ)由已知得,小明中奖的概率为|false,小红中奖的概率为false,且两人中奖与否互不影响.
记“false”的事件为false,则事件false的对立事件为false,即“false”,
因为false,
所以false,
即false的概率为false.
(Ⅱ)设小明、小红都选择方案甲所获得的优惠券总金额为false元,都选择方案乙所获得的优惠券总金额为false元,则false的可能取值为0,300,600,false的可能取值为0,350,700.
false,
false,
false,
false,
false,
false,
所以false,false的分布列如下:
false
0
300
600
false
false
false
false
false
0
350
700
false
false
false
false
所以false,
false.
因为false,所以他们都选择方案甲进行抽奖时,所获得的优惠券总金额的数学期望较大.
20.命题意图 本题考查椭圆的标准方程、直线与椭圆的位置关系.
解析(Ⅰ)由题意,得false,
再由连接椭圆的四个顶点得到的菱形的面积为false可得false,
所以false.
所以椭圆false的标准方程为false.
(Ⅱ)设false,false,
则直线false的方程为false.
令false,得点false的横坐标false.
又false,从而false,同理,false.
由false得false,则false,false.
所以false,
即false为定值2.
21.命题意图 本题考査导数在研究函数中的应用.
解析(Ⅰ)由题可知false的定义域为false,
false.
令false,得false.
∴当false时,false,函数false单调递减;
当false时,false,函数false单调递增.
(Ⅱ)由题可知false,
则false.
∵false在false上是增函数,
∴false在false上恒成立.
∴对任意false,不等式false恒成立,等价于false恒成立.
令false,则false,false.
令false,则false,
∵false,∴false,
∴false在false上单调递减,
∴当false时,false,当false时,false,
即函数false在区间false上单调递增,在区间false上单调递减,
∴false,从而false,即false的取值范围为false.
22.命题意图 本题考查极坐标方程与参数方程及其应用.
解析(Ⅰ)由false(false为参数),消去参数false可得,曲线false的普通方程为false.
曲线false的极坐标方程为false,即false,所以false的直角坐标方程为false.
(Ⅱ)由曲线false的普通方程为false,可知它表示圆心为false,半径false的圆.
圆心false到直线false的距离false,
故false.
原点false到直线false的距离false.
所以false.
所以false的面积为false.
23.命题意图 本题考查求绝对值不等式的解集及绝对值不等式恒成立问题.
解析(Ⅰ)依题意,false
当false时,false,解得false;
当false时,false,解得false;
当false时,false,无解.
综上可得,不等式false的解集为false.
(Ⅱ)因为false在false上恒成立,
所以false,即false,所以false,
所以false
由①,得false.
由②,得false在false上恒成立,所以false.
因为false,所以false.
综上所述,实数false的取值范围为false.