23.1 图形的旋转(1)

文档属性

名称 23.1 图形的旋转(1)
格式 zip
文件大小 28.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-04-25 11:13:35

图片预览

文档简介

23.1 图形的旋转(1)
第8周1课时
教学目标
(1)了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
(2)通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
(3)培养学生的艺术创作能力和初步的艺术欣赏能力,培养勇于探索的精神,树立学习的自信心。
重难点:
重点:旋转及对应点的有关概念及其应用.
难点:从活生生的数学中抽出概念.
教学方法:自学引导、当堂达标
教学过程
一、示标导学
1、复习提问(学生活动)请同学们完成下面各题.
(1).将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
(2).如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.
(3).圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它既有的一些性质.
(3)什么叫轴对称图形?
2、出示学习目标(略)
二、自学解疑
我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1、2两题有什么共同特点呢?
共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A、B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.
(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?
(2)请画出旋转中心和旋转角.
(3)指出,经过旋转,点A、B、C、D分别移到什么位置?
(老师点评)
(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.
最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.
三、探究提升
例.两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.
分析:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S△OEE`=S△ODD`,那么只要说明△OEF′≌△ODD′.
解:面积不变.
理由:设任转一角度,如图所示.
在Rt△ODD′和Rt△OEE′中
∠ODD′=∠OEE′=90°
∠DOD′=∠EOE′=90°-∠BOE
OD=OD
∴△ODD′≌△OEE′
∴S△ODD`=S△OEE`
∴S四边形OE`BD`=S正方形OEBD=
1.阅读下面材料:
如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.
如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.
(4) (5) (6) (7)
如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.
回答下列问题
如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=AB.
(1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置?
(2)指出如图7所示中的线段BE与DF之间的关系.
四、达标检测
一、选择题
1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有( ).
A.6个 B.7个 C.8个 D.9个
2.从5点15分到5点20分,分针旋转的度数为( ).
A.20° B.26° C.30° D.36°
3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于( ).
A.70° B.80° C.60° D.50°
(1) (2) (3)
二、填空题.
1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.
2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.
3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________五、归纳小结(学生总结,老师点评)
1.旋转及其旋转中心、旋转角的概念.
2.旋转的对应点及其它们的应用.角形.
教学反思:本节课的设计本着以观察为起点,以问题为主线,以培养能力为核心的宗旨,让学生从特殊到一般,具体到抽象,由浅入深逐步认识学会本节内容。