课题:等比数列的前n项和
教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题;
(2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想;
(3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;
教学重点:(1)等比数列的前n项和公式;
(2)等比数列的前n项和公式的应用;
教学难点:等比数列的前n项和公式的推导;
教学方法:问题探索法及启发式讲授法
教 具:多媒体
教学过程:
一、复习提问
回顾等比数列定义,通项公式。
(1)等比数列定义:(,
(2)等比数列通项公式:
(3)等差数列前n项和公式的推导方法:倒序相加法。
二、问题引入:
阅读:课本第55页“国王赏麦的故事”。
问题:如何计算
引出课题:等比数列的前n项和。
三、问题探讨:
问题:如何求等比数列的前n项和公式
回顾:等差数列的前n项和公式的推导方法。
倒序相加法。
等差数列它的前n项和是
根据等差数列的定义
(1)
(2)
(1)+(2)得:
探究:等比数列的前n项和公式是否能用倒序相加法推导?
学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。
回顾:等差数列前n项和公式的推导方法本质。
构造相同项,化繁为简。
探究:等比数列前n项和公式是否能用这种思想推导?
根据等比数列的定义:
变形:
具体: ……
学生分组讨论推导等比数列的前n项和公式,学生不难发现:
由于等比数列中的每一项乘以公比都等于其后一项。
所以将这一特点应用在前n项和上。
由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。
(1)
(2)
由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。
当q=1时,
当时,
学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。
由等比数列的通项公式推出求和公式的第二种形式:
当时,
四.知识整合:
1.等比数列的前n项和公式:
当q=1时,
当时,
2.公式特征:
⑴等比数列求和时,应考虑 与 两种情况。
⑵当时,等比数列前n项和公式有两种形式,分别都涉及四个量,四个量中“知三求一”。
⑶等比数列通项公式结合前n项和公式涉及五个量,,
五个量中“知三求二”(方程思想)。
3.等比数列前n项和公式推导方法:错位相减法。
五、例题精讲:
例1.运用公式解决国王赏麦故事中的难题。
变式练习:⑴求等比数列1,2,4,8…的前多少项和是63.
⑵求等比数列1,2,4,8…第4项到第7项的和.
例2.画一个边长为2cm的正方形,再将这个正方形各边的中点相连得到第2个正方形,
依次类推⑴若一共画了7个正方形,求第7个正方形的面积?
⑵若已知所画正方形的面积和为,求一共画了几个正方形,及所画的最后一个正方形的面积。
解:由题意得:每个正方形的面积构成等比数列,且
(1)
(2)
答:(1)第七个正方形的面积是。
(2)一共测了5个正方形,所画的最后一个正方形的面积是。
巩固练习:⑴已知等比数列中,,,求。
⑵已知等比数列中,,,,求n,。
六、课堂小结:
1、等比数列的前n项和公式:
当q=1时,
当时,
2、等比数列的前n项和推导方法:错位相减法。
3、数学思想:类比,分类讨论,方程的数学思想。
七、课后作业:
基础题:课本P61 习题2.5 A组1,2
提高题:求和(
探究与发现:查阅网络,思考等比数列前n项和公式还有无其它推导方法?
八、板书设计:
九、课后反思:
2.5.1等比数列的前n项和
公式: 例1 例2
特征 变式练习: 巩固练习: