课 题 商不变的规律
教 学
目
标 1、知识与技能:能运用商不变规律口算有关除法;
2、过程与方法:通过观察、分析、交流、合作总结商不变的规律。
3、情感、态度、价值观:培养观察、比较、猜想、概括能力,体验成功,同时渗透初步的辩证唯物主义思想启蒙教育。
教学 重点
难点 教学重点:理解并归纳出商不变的规律,利用商不变的规律进行简便计算。
教学难点:归纳商不变的规律.
自学
指导 课堂中引导学生自主发现,获取新知。
教学
方法 讲授法、发现法、练习法。
教 学
过
程 一、创设情境,激发兴趣。
师:今天老师和同学们一起学数学,老师给你们讲一个故事。(课件演示故事内容)
猴 子 分 桃
花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴子分桃子。猴王说:“给你6个桃子,平均分给你们3只小猴子吧。”小猴子听了,我只能得到2个桃子。连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你60个桃子,平均分给你们30只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,开恩啊,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你600个桃子,平均分给你们300只小猴,你总该满意了吧?”小猴子觉得占了大便宜,开心地笑了,猴王也笑了。谁谁的笑是聪明的一笑?为什么呢?
预设:猴王的笑是聪明的一笑。按照这3种分法,每只小猴得到的都是2个桃子。
师:你是怎么知道的?
生: 6÷3=2 60÷30=2 600÷300=2
师:真聪明!(同时板书算式)
2.观察这几个算式,你发现了什么?(这几个除法算式的商是2)
这里的“2”叫什么?(商)变不变?谁在变变变?(被除数、除数)
师标注被除数、除数和商
师:这节课我们就来好好研究一下这个问题:为什么商不变,揭开商不变的规律。
师:要来研究这个规律,只有这三个算式看来有点少,要想研究一个规律要看看我这里有没有,你这里有没有,他这里有没有,对不对?再来看看,这里讲的是什么事。
3.出示PPT坐标系:买铅笔
生读图,思考,举手发言。引导得出算式。
一生板书算式。
师:这里的5是单价,它变没变?在这个算式里它是什么?这里商又不变。你的商不变,我的商不变,看来这里真的有?
二、合作学习 探索规律
布置任务:自选一组算式进行研究,看看被除数怎么变的,除数怎么变的,商就不变。
男生女生两组学生上黑板进行研究,下面的学生自己抄写一组算式(抄写时算式中间留点空,便于分析)进行研究。要求:不讨论,独立思考。
师巡视,辅导。
师辅导学困生:有谁什么感觉都没有的同学举手,我来帮助你找找感觉
三、小组汇报 发现规律
1.第一组算式讨论:
6÷3=2
↓
60÷30=2
↓
600÷300=2
主持人:你对我们这组算式后什么想法呢? 谁还有没有新的发现?
学生举手汇报自己的认识。(师及时点评引导,注意多欣赏)注意引导从6到600的变化和600到6的变化。
2.第二组算式讨论:
10÷2=5
↓
20÷4=5
↓
40÷8=5
四、举例验证 概括规律
师:第一组算式,第二组算式,商为什么不变,谁已经有点感觉了,把你的感觉的例子写出来 写两个式子就行了。
谁愿意到黑板上来写。
(学生黑板上写算式,教师巡视,指名学生读自己写的算式。)
1. 分析黑板上学生的算式
2. 独立思考,写出你的发现。
师:你写一组,我写一组,具有这样特征的式子能不能写完?谁能用一句话来总结总结,或者用一个式子来说说这里面有什么秘密呢?
先独立思考,看看你发现什么,就在旁边写上我发现:_______。
写下了我们一会讨论。不许交流。
(教师巡视,收集信息,找到有代表性的结论。)
3. 小组交流,说出你的发现。展示学生的作业。学生代表发言,评价。
4. 教师鼓励性的小结:
这就是商不变的原因。投影结论,学生读一遍。
5.师:你们真了不起,通过观察、思考和讨论,发现了这样一条很重要的规律,这就是商不变规律。(板书课题)
6. 留下疑问:你还有什么想法吗,还有什么猜想吗?预设:小数呢,分数呢,零呢,你加一个数我加一个数呢。。。。。是不是所有的数都行呢,有没有特殊的书呢。这事儿你们回去再商量商量,今天先不讨论。这些事我们以后来研究。
五、反馈练习 深化认识
PPT出示:练一练1.2. 3.
六、课堂总结
这节课你学到了什么?还有什么不理解的地方?
作 业
设
计 1、判断
480÷80=(480÷10)÷(80÷1) ( )
56÷4=(56×100) ÷(4÷10) ( )
2400÷80=(2400÷10)÷(2400×10) ( )
700÷25=(700×4)÷(25×4) ( )
2、计算下面各题
240÷30 80÷20 440÷20 9200÷400
3、下面是淘气计算400÷25的过程,观察计算的每一步,你受到什么启发?
400÷25
=(400×4)÷(25×4)
=1600÷100
=16
你能用这个方法计算下面各题吗?
150÷25 2000÷125
板 书
设
计 板书设计
商不变的规律
6÷3=2
乘 除
(6×10)÷(3×10)=2 (60÷10)÷(30÷10)=2
(6×100)÷(3×100)=2 (600÷10)÷(30÷10)=2
被除数和除数同时乘或除以相同的数,商不变。
教 学
反
思 故事引入,发现商不变的特征;观察图象,渗透函数思想,再次发现商不变的一组算式,引发讨论。接着进行合作探究,分析被除数和除数发生怎样的改变,然后商就不变;在此基础上,再进行举例验证,试用自己的话进行归纳和概括,得出结论。本课不讨论0这一特殊情况,重点放在探究发现和归纳商不变的规律。
教学中小组研讨和自主学习相结合,放手让学生自己发现规律,描述规律不求完整和语言的规范,重在敢说,用自己的方式描述,教师的激励更能激发学生的表达积极性和热情。
学生的归纳作业展示能用投影的方式更直观,便于比较不同说法的层次。
0