实际问题和一元一次不等式(1)教学设计
【教材地位分析】
(1)本节内容,是在学习了用方程思想解决实际问题和一元一次不等式的性质及其解法等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为今后用不等式组解决实际问题以及更广泛的应用数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )建模的思想方法奠定基础,具有在代数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )中承上启下的作用;
(2)通过本节的学习,学生将继续经历把生活中的数和数量关系转化为数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )符号的体验过程,体会不等式和方程一样都是刻画现实世界数量关系的重要模型。
(3)在列不等式解决实际问题的探索过程中,引导学生注意估算意识,体会算式结果所对应的实际意义,渗透建立数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )模型,分类讨论等数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )思想,对提升学生应用数学 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )意识思考和解决问题的能力起到积极的作用。
【重点、难点】
教学重点:寻找实际问题中的不等关系,建立数学模型。
教学难点:弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
【教学目标】
知识与技能目标:
会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;
过程与方法目标:
通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;
情感与态度目标:
在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
【学生分析】
由于本节需要探究的问题比较复杂,所以学生感到学习难度较大,所以引导学生分析问题就成了重中之重,限于学生的年龄特点和知识积累的量太少,应循序渐进,由易到难,由简单到复杂,避免是学生产生厌学心理。
【设计理念】
1.尊重学生的心里发展的特点,利用情境教学,来调动学生的学习积极性。
2.加强同学之间的合作,通过学生的交流、合作,培养学生的团结意识。
【教学方法】
引导学生课前用好《问题导读---评价单》,对所学知识进行提前预习,找出难理解的问题,以便上课更有针对性。
教师将复杂问题分解成较简单的问题,给学生的探索设置低起点的台阶,创设和谐的学习环境,使学生对问题的探究一步步顺利展开.在问题解决的过程中,以学生自主探索、合作交流为主,教师引导、点拨为辅,努力使课堂成为个体主动思考、生生互动交流、师生互补提高的学习活动场所.授课过程中注意导学生充分利用《问题生成---评价单》。
然后辅之《问题训练---评价单》进行课堂知识的巩固和验证。
【教师课前准备】
《问题导读---评价单》、《问题生成---评价单》、《问题训练---评价单》
【教学过程设计】
问题与情境 师生行为 设计意图
(一)创设情境某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择? (多媒体展示商场购物情景)问题1:如何列不等式?问题2:如何解这个不等式?(二)、探索新知,讲授新课甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?问题1:这个问题比较复杂.你该从何入手考虑它呢? 问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑? (三)、巩固训练 熟练技能1、某单位要制作一批宣传资料.甲公司提出:每份材料收费20元,另收设计费3 000元;乙公司提出:每份材料收费30元,不收设计费. ①什么情况下,选择甲公司比较合算? ②什么情况下,选择乙公司比较合算? ③什么情况下,两公司收费相同?2、某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费o.2元;“神州行”没有月租费,每分钟通话费0.4元(两种通话均指市内通话).如果一个月内通话x分钟,选择哪种通讯业务比较合算?(四)、接受考验发放《问题训练---评价单》,学生独立完成上面的练习题(五)反思回顾问题1:本节课你学习了什么 问题2:本节课你有哪些收获 问题3:通过今天的学习,你想进一步探究的问题是什么 让学生利用课前问题导读评价单进行充分大预习,找出有难点的问题,以增强上课的听课效果。1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案: (1)什么情况下,到甲商场购买更优惠? (2)什么情况下,到乙商场购买更优惠? (3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.课上发放《问题生成评价单》,教师提出问题,学生尝试解答,一名学生板演,结合板演订正,提醒学生注意过程的规范与运算的准确分组活动.先独立思考,再组内交流,然后各组汇报讨论结果. 最后教师总结分析:1、如果累计购物不超过50元,则在两家商场购物花费是一样的;2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。3、如果累计购物超过100元,又有三种情况: (1)什么情况下,在甲商场购物花费小? (2)什么情况下,在乙商场购物花费小? (3)什么情况下,在两家商场购物花费相同? 上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。让学生分组讨论,然后合作让学生共同解决问题,并让学生代表到黑板前板演,教师巡视,给与指导。通过这两道练习题,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便.由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.让学生独立完成训练单上的题目,通过测验,让学生发现本课堂中存在的问题,起到查漏补缺的作用。围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。 通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。 设置开放性问题,为学生开放性思维提供时间和空间,可极大调动学生的创造积极性.应把握学生的创新潜能,使不同层次的学生都能得到发展。这些问题能培养学生思维的深刻性和灵活性,优化学生的思品质.引导学生用数学眼光去观察周围的生活现象,思考能否用数学知识、方法、观点和思想去解决所遇到的问题.让学生在积极愉快的气氛中温习本节课学到的知识和技能,体会收获的喜悦。数学课不比其它科目,练习在课堂中起着举足轻重的作用,一道好的练习题能将知识点很好的理解,能使学生很快掌握知识点。因此,通过精选典型题目,使学生能做到举一反三,从而保证课堂教学的效率结合具体问题梳理总结,学生的思路容易打开,且感触较深,有利于学生将新旧知识融合为一体,构建新的知识体系
教学反思
本课设置了丰富的实际情境,可以使学生体会到现实生活中存在着大量的不等关系,不等式是现实世界中不等关系的一种数学表示形式,它也是刻画现实世界中量与量之间关系的有效模型. 教学过程也是学生的认知过程,只有学生积极地参与教学活动才能收到良好的效果.因此,本课采用启发诱导、实例探究、讲练结合的教学方法,揭示知识的发生和形成过程.这种教学方法以“生动探索”为基础,先“引导发现”,后“讲评点拨”,让学生在克服困难与障碍的过程中充分发挥自己的观察力、想像力和思维力,再加上多媒体的运用,使学生真正成为学习的主体.
《实际问题和一元一次不等式(1)问题导读——评价单》
设计者: 班级: 姓名:
知识与技能目标:
会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;
过程与方法目标:
通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;
情感与态度目标:
在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
为你导航
1、某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲,乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.
甲 乙
价格/(万元/台) 7 5
每台日产量/个 100 60
(1)按该公司要求可以有几种购买方案?
(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?
2、某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.
(1)为了保证所有工人的每月工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元(精确到分)?
(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于1200元,问小张在六月份应至少加工多少套童装?
通过预习本节内容你未解决的问题有:
.
自我评价: 小组评价: 教师评价:
《实际问题和一元一次不等式(1)问题生成——评价单》
请同学们在预习的基础上,将生成的问题充分交流后,在单位时间内完成下列题目,并准备多元化展示.
带着问题走进丰富多彩的数学世界
问题一
某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?
问题1:如何列不等式?
问题2:如何解这个不等式?
问题二:
甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?
问题1:这个问题比较复杂.你该从何入手考虑它呢?
问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?
问题三:
1、某单位要制作一批宣传资料.甲公司提出:每份材料收费20元,另收设计费3 000元;乙公司提出:每份材料收费30元,不收设计费.
①什么情况下,选择甲公司比较合算?
②什么情况下,选择乙公司比较合算?
③什么情况下,两公司收费相同?
2、某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费o.2元;“神州行”没有月租费,每分钟通话费0.4元(两种通话均指市内通话).如果一个月内通话x分钟,选择哪种通讯业务比较合算?
小组评价: 教师评价:
《实际问题和一元一次不等式(1)问题训练——评价单》
设计者: 班级: 姓名:
我要飞得更高
【基础达标】
1、田园牌大米,每袋10千克,某校派3名采购员分别在3家超市采购,购买的售价及数量情况如下表:
如果这3家超市的田园牌大米的每袋进价都是x元,并且在本次销售中,C超市获利最多,但利润不超过110元,试求出x的取值范围
2、我校为组织八年级的234名同学去看电影,租用了某公交公司的几辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.他们共租了 辆公共汽车.
3、某初级中学八年级(1)班若干名同学星期天去公园游览,公园售票窗口标明票价:每人10元,团体票25人以上(含25人)8折优惠,他们经过核算,买团体票比买单人票便宜,则他们至少有 人.
4、老师准备购买精美的练习本当作奖品,有两种购买方式:一种是直接按定价购买,每本售价为8元;另一种是先购买会员年卡(自购买之日起,可持供卡人使用一年),每张卡40元,再持卡买这种练习本,每本5元.
(1)如果购买20本这种练习本,两种购买方式各需要 元、 元;
(2)如果你只能选择一种购买方式,并且你计划一年中用100元花在购买这种练习本上,请通过计算找出可使用购买本数最多的购买方式;
(3)一年至少购买这种练习本超过 本,购买会员年卡才合算.
【拓展提升】
5、深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准,沪杭磁悬浮线建成后,分为中心城区段与郊区段两部分,其中中心城区段的长度为60千米,占全程的40%.沪杭磁悬浮的票价预定为0.65元/千米~0.75元/千米,请你估计沪杭磁悬浮的全程票价的范围.
《实际问题和一元一次不等式(1)问题导读——评价单》答案
1、【解析】(1)可设购买甲种机器x台,然后用x表示出购买甲,乙两种机器的实际费用,根据“本次购买机器所耗资金不能超过34万元”列不等式求解.
(2)分别算出(1)中各方案每天的生产量,根据“日生产能力不低于380个”与“节约资金”两个条件选择购买方案.
解(1)设购买甲种机器x台,则购买乙种机器(6-x)台,则
7x+5(6-x)≤34
解得x≤2
又x≥0
∴0≤x≤2
∴整数x=0,1,2
∴可得三种购买方案:
方案一:购买乙种机器6台;
方案二:购买甲种机器1台,乙种机器5台;
方案三:购买甲种机器2台,乙种机器4台.
(2)列表如下:
日生产量/个 总购买资金/万元
方案一 360 30
方案二 400 32
方案三 440 34
由于方案一的日生产量小于380个,因此不选择方案一;方案三比方案二多耗资2万元,故选择方案二.
【点评】①部分实际问题的解通常为整数;②方案的各种情况可以用表格的形式表达.
2、【分析】(1)五月份工人加工的最少套数为150×60%,若设平均每套奖励x元,则该工人的新工资为(200+150×60%x),由题意得200+150×60%x≥450;
(2)六月份的工资由基本工资200元和奖励工资两部分组成,若设小张六月份加工了y套,则依题意可得200+5y≥1200.
【解答】(1)设企业每套奖励x元,由题意得:200+60%×150x≥450.
解得:x≥2.78.
因此,该企业每套至少应奖励2.78元;
(2)设小张在六月份加工y套,由题意得:200+5y≥1200,解得y≥200.
【点评】本题重点考查学生从生活实际中理解不等关系的能力,对关键词“不低于”、“至少”、“不少于”的理解是解本例的关键.
《实际问题和一元一次不等式(1)问题训练——评价单》答案
1、26≤x<29
2、解答:解:设他们共租了x辆公共汽车.
0<234-30×(x-1)<30,
解得7.8<x<8.8,
∴他们共租了8辆公共汽车.
3、解答:解:设至少有x人.
则25×0.8×10<10x
x>20
因此他们至少有21人点评:
4、解答:解:(1)20×8=160(元),5×20+40=140(元),
∴两种分别需要160元和140元;
(2)100÷8=12.5,(100-40)÷5=12,
∵练习本数为整数,
∴最多都只能买12本,两种一样多;
(3)设为x本,根据题意得:5x+40<8x,
解得:x>13,
∴当超过13本时,购买年卡合算.
5、解:总长度为60÷40%(1分)=150千米,设票价为x,那么
x≥150×0.65①,
x≤150×0.75②,
解得97.5≤x≤112.5
即票价范围是97.5元~112.5元.
注:①票价范围用97.5元≤x≤112.5元、97.5元~112.5元、97.5元与112.5元之间表示均可以,不扣分;