2020年北京市高考物理真题试卷(新高考)

文档属性

名称 2020年北京市高考物理真题试卷(新高考)
格式 zip
文件大小 1.6MB
资源类型 试卷
版本资源
科目 物理
更新时间 2020-07-25 12:31:35

文档简介

2020年北京市高考物理真题试卷(新高考)
一、选择题(本题共14小题,共42分)
1.(2020·北京)以下现象不属于干涉的是(  )
A.白光经过杨氏双缝得到彩色图样
B.白光照射肥皂膜呈现彩色图样
C.白光经过三棱镜得到彩色图样
D.白光照射水面油膜呈现彩色图样
2.(2020·北京)氢原子能级示意如图。现有大量氢原子处于 能级上,下列说法正确的是(  )
A.这些原子跃迁过程中最多可辐射出2种频率的光子
B.从 能级跃迁到 能级比跃迁到 能级辐射的光子频率低
C.从 能级跃迁到 能级需吸收 的能量
D. 能级的氢原子电离至少需要吸收 的能量
3.(2020·北京)随着通信技术的更新换代,无线通信使用的电磁波频率更高,频率资源更丰富,在相同时间内能够传输的信息量更大。第5代移动通信技术(简称5G)意味着更快的网速和更大的网络容载能力,“4G改变生活,5G改变社会”。与4G相比,5G使用的电磁波(  )
A.光子能量更大 B.衍射更明显
C.传播速度更大 D.波长更长
4.(2020·北京)如图所示,一定量的理想气体从状态A开始,经历两个过程,先后到达状态B和C。有关A、B和C三个状态温度 和 的关系,正确的是(  )
A. B.
C. D.
5.(2020·北京)我国首次火星探测任务被命名为“天问一号”。已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是(  )
A.火星探测器的发射速度应大于地球的第二宇宙速度
B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间
C.火星的第一宇宙速度大于地球的第一宇宙速度
D.火星表面的重力加速度大于地球表面的重力加速度
6.(2020·北京)一列简谐横波某时刻波形如图甲所示。由该时刻开始计时,质点L的振动情况如图乙所示。下列说法正确的是(  )
A.该横波沿 轴负方向传播
B.质点N该时刻向y轴负方向运动
C.质点L经半个周期将沿 轴正方向移动
D.该时刻质点K与M的速度、加速度都相同
7.(2020·北京)真空中某点电荷的等势面示意如图,图中相邻等势面间电势差相等。下列说法正确的是(  )
A.该点电荷一定为正电荷
B.P点的场强一定比Q点的场强大
C.P点电势一定比Q点电势低
D.正检验电荷在P点比在Q点的电势能大
8.(2020·北京)如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。下列说法正确的是(  )
A.偏转原因是圆盘周围存在电场
B.偏转原因是圆盘周围产生了磁场
C.仅改变圆盘的转动方向,偏转方向不变
D.仅改变圆盘所带电荷的电性,偏转方向不变
9.(2020·北京)如图所示, 理想变压器原线圈接在 的交流电源上, 副线圈接三个阻值相同的电阻R,不计电表内电阻影响。闭合开关S后(  )
A.电流表 的示数减小 B.电压表 的示数减小
C.电压表 的示数不变 D.电流表 的示数不变
10.(2020·北京)分子力 随分子间距离 的变化如图所示。将两分子从相距 处释放,仅考虑这两个分于间的作用,下列说法正确的是(  )
A.从 到 分子间引力、斥力都在减小
B.从 到 分子力的大小先减小后增大
C.从 到 分子势能先减小后增大
D.从 到 分子动能先增大后减小
11.(2020·北京)某同学利用图甲所示装置研究摩擦力的变化情况。实验台上固定一个力传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。水平向左拉木板,传感器记录的 图像如图乙所示。下列说法正确的是(  )
A.实验中必须让木板保持匀速运动
B.图乙中曲线就是摩擦力随时间的变化曲线
C.最大静摩擦力与滑动摩擦力之比约为10:7
D.只用图乙中数据可得出物块与木板间的动摩擦因数
12.(2020·北京)图甲表示某金属丝的电阻 随摄氏温度 变化的情况。把这段金属丝与电池、电流表串联起来(图乙),用这段金属丝做测温探头,把电流表的刻度改为相应的温度刻度,就得到了一个简易温度计。下列说法正确的是(  )
A. 应标在电流较大的刻度上,且温度与电流是线性关系
B. 应标在电流较大的刻度上,且温度与电流是非线性关系
C. 应标在电流较大的刻度上,且温度与电流是线性关系
D. 应标在电流较大的刻度上,且温度与电流是非线性关系
13.(2020·北京)在同一竖直平面内,3个完全相同的小钢球(1号、2号、3号)悬挂于同一高度;静止时小球恰能接触且悬线平行,如图所示。在下列实验中,悬线始终保持绷紧状态,碰撞均为对心正碰。以下分析正确的是(  )
A.将1号移至高度 释放,碰撞后,观察到2号静止、3号摆至高度 。若2号换成质量不同的小钢球,重复上述实验,3号仍能摆至高度
B.将1、2号一起移至高度 释放,碰撞后,观察到1号静止,2、3号一起摆至高度 ,释放后整个过程机械能和动量都守恒
C.将右侧涂胶的1号移至高度 释放,1、2号碰撞后粘在一起,根据机械能守恒,3号仍能摆至高度
D.将1号和右侧涂胶的2号一起移至高度 释放,碰撞后,2、3号粘在一起向右运动,未能摆至高度 ,释放后整个过程机械能和动量都不守恒
14.(2020·北京)在无风的环境,某人在高处释放静止的篮球,篮球竖直下落;如果先让篮球以一定的角速度绕过球心的水平轴转动(如图)再释放,则篮球在向下掉落的过程中偏离竖直方向做曲线运动。其原因是,转动的篮球在运动过程中除受重力外,还受到空气施加的阻力 和偏转力 。这两个力与篮球速度 的关系大致为: ,方向与篮球运动方向相反; ,方向与篮球运动方向垂直。下列说法正确的是(  )
A. 、 是与篮球转动角速度无关的常量
B.篮球可回到原高度且角速度与释放时的角速度相同
C.人站得足够高,落地前篮球有可能向上运动
D.释放条件合适,篮球有可能在空中持续一段水平直线运动
二、实验题(本题共2小题,共18分)
15.(2020·北京)在“探究加速度与物体受力、物体质量的关系”实验中,做如下探究:
(1)为猜想加速度与质量的关系,可利用图1所示装置进行对比实验。两小车放在水平板上,前端通过钩码牵引,后端各系一条细线,用板擦把两条细线按在桌上,使小车静止。抬起板擦,小车同时运动,一段时间后按下板擦,小车同时停下。对比两小车的位移,可知加速度与质量大致成反比。关于实验条件,下列正确的是:________(选填选项前的字母)。
A.小车质量相同,钩码质量不同
B.小车质量不同,钩码质量相同
C.小车质量不同,钩码质量不同
(2)某同学为了定量验证(1)中得到的初步关系,设计实验并得到小车加速度 与质量 的7组实验数据,如下表所示。在图2所示的坐标纸上已经描好了6组数据点,请将余下的一组数据描在坐标纸上,并作出 图像。
次数 1 2 3 4 5 6 7
0.62 0.56 0.48 0.40 0.32 0.24 0.15
0.25 0.29 0.33 0.40 0.50 0.71 1.00
(3)在探究加速度与力的关系实验之前,需要思考如何测“力”。请在图3中画出小车受力的示意图。为了简化“力”的测量,下列说法正确的是:__________(选填选项前的字母)。
A.使小车沿倾角合适的斜面运动,小车受力可等效为只受绳的拉力
B.若斜面倾角过大,小车所受合力将小于绳的拉力
C.无论小车运动的加速度多大,砂和桶的重力都等于绳的拉力
D.让小车的运动趋近于匀速运动,砂和桶的重力才近似等于绳的拉力
16.(2020·北京)用图1所示的甲、乙两种方法测量某电源的电动势和内电阻(约为1Ω)。其中R为电阻箱,电流表的内电阻约为0.1Ω,电压表的内电阻约为3kΩ。
(1)利用图1中甲图实验电路测电源的电动势E和内电阻r,所测量的实际是图2中虚线框所示“等效电源”的电动势 和内电阻 。若电流表内电阻用 表示,请你用E、r和RA表示出 、 ,并简要说明理由。
(2)某同学利用图像分析甲、乙两种方法中由电表内电阻引起的实验误差。在图3中,实线是根据实验数据(图甲:U=IR,图乙: )描点作图得到的U-I图像;虚线是该电源的路端电压U随电流I变化的U-I图像(没有电表内电阻影响的理想情况)。
在图3中,对应图甲电路分析的U-I图像是:   ;对应图乙电路分析的U-I图像是:   。
(3)综合上述分析,为了减小由电表内电阻引起的实验误差,本实验应选择图1中的   (填“甲”或“乙”)。
三、解答题
17.(2020·北京)无人机在距离水平地面高度 处,以速度 水平匀速飞行并释放一包裹,不计空气阻力,重力加速度为 。
(1)求包裹释放点到落地点的水平距离 ;
(2)求包裹落地时的速度大小 ;
(3)以释放点为坐标原点,初速度方向为 轴方向,竖直向下为 轴方向,建立平面直角坐标系,写出该包裹运动的轨迹方程。
18.(2020·北京)如图甲所示, 匝的线圈(图中只画了2匝),电阻 ,其两端与一个 的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻 的电流方向;
(2)求线圈产生的感应电动势 ;
(3)求电阻 两端的电压 。
19.(2020·北京)如图甲所示,真空中有一长直细金属导线 ,与导线同轴放置一半径为 的金属圆柱面。假设导线沿径向均匀射出速率相同的电子,已知电子质量为 ,电荷量为 。不考虑出射电子间的相互作用。
(1)可以用以下两种实验方案测量出射电子的初速度:
a.在柱面和导线之间,只加恒定电压;
b.在柱面内,只加与 平行的匀强磁场。
当电压为 或磁感应强度为 时,刚好没有电子到达柱面。分别计算出射电子的初速度 。
(2)撤去柱面,沿柱面原位置放置一个弧长为 、长度为 的金属片,如图乙所示。在该金属片上检测到出射电子形成的电流为 ,电子流对该金属片的压强为 。求单位长度导线单位时间内出射电子的总动能。
20.(2020·北京)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小 随速度 的变化曲线。
(1)求列车速度从 降至 经过的时间t及行进的距离x。
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为 ,不计金属棒 及导轨的电阻。 沿导轨向右运动的过程,对应列车的电气制动过程,可假设 棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的 点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从 减到 的过程中,在哪个速度附近所需机械制动最强
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
答案解析部分
1.【答案】C
【知识点】光的干涉
【解析】【解答】A.根据光的干涉定义可知白光经过杨氏双缝得到彩色图样是杨氏双缝干涉,A不符合题意;
B.由于重力的作用,肥皂膜形成了上薄下厚的薄膜,光线通过薄膜时频率不变,干涉条纹的产生是由于光线在薄膜前后两表面反射形成的两列光波的叠加,白光照射肥皂膜呈现彩色图样是属于干涉现象,B不符合题意;
C.白光经过三棱镜得到彩色图样是光在折射时产生的色散现象,C符合题意;
D.水面上的油膜呈现彩色是光的干涉现象,属于薄膜干涉,D不符合题意;
故答案为:C。
【分析】太阳光经过三棱镜折射后会形成彩色光带,该现象叫做光的色散,并非光的干涉。
2.【答案】C
【知识点】氢原子光谱
【解析】【解答】A.大量氢原子处于 能级跃迁到 最多可辐射出 种不同频率的光子,A不符合题意;
B.根据能级图可知从 能级跃迁到 能级辐射的光子能量为
从 能级跃迁到 能级辐射的光子能量为
比较可知从 能级跃迁到 能级比跃迁到 能级辐射的光子频率高,B不符合题意;
C.根据能级图可知从 能级跃迁到 能级,需要吸收的能量为 ,C符合题意;
D.根据能级图可知氢原子处于 能级的能量为-1.51eV,故要使其电离至少需要吸收1.51eV的能量,D不符合题意;
故答案为:C。
【分析】当电子由低能级跃迁到高能级时,电子需要吸收能量,当电子由高能级跃迁到低能级时,电子需要释放能量,结合公式求解产生或吸收光子的频率。
3.【答案】A
【知识点】光的波粒二象性
【解析】【解答】A.因为5G使用的电磁波频率比4G高,根据 可知5G使用的电磁波比4G光子能量更大,A符合题意;
B.发生明显衍射的条件是障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小;因5G使用的电磁波频率更高,即波长更短,故5G越不容易发生明显衍射,B不符合题意;
C.光在真空中的传播速度都是相同的;光在介质中的传播速度为
5G的频率比4G高,而频率越大折射率越大,光在介质中的传播速度越小,C不符合题意;
D.因5G使用的电磁波频率更高,根据
可知波长更短,D不符合题意。
故答案为:A。
【分析】根据德布罗意关系可以得到,当粒子的动量越小,对应的波长就越长,波动性就越明显。
4.【答案】C
【知识点】气体的变化图像P-V图、P-T图、V-T图
【解析】【解答】由图可知状态A到状态B是一个等压过程,根据
因为VB>VA,故TB>TA;而状态B到状态C是一个等容过程,有
因为pB>pC,故TB>TC;对状态A和C有
可得TA=TC;综上分析可知C符合题意,ABD不符合题意;
故答案为:C。
【分析】对于P-T图像,从图中得到气体处在某种状态的压强和温度,根据理想气体物态方程求解体积的变化即可。
5.【答案】A
【知识点】第一、第二与第三宇宙速度
【解析】【解答】A.当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,A符合题意;
B.第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,B不符合题意;
C.万有引力提供向心力,则有
解得第一宇宙速度为
所以火星的第一宇宙速度为
所以火星的第一宇宙速度小于地球的第一宇宙速度,C不符合题意;
D. 万有引力近似等于重力,则有
解得星表面的重力加速度
所以火星表面的重力加速度小于地球表面的重力加速度,D不符合题意。
故答案为:A。
【分析】卫星发射速度达到第一宇宙速度,围绕着地球运动,发射速度达到第二宇宙速度,会脱离地球的引力,围绕着太阳运动,发射速度达到第三宇宙速度,会脱离太阳的引力,飞出太阳系。
6.【答案】B
【知识点】简谐运动的表达式与图象;横波的图象;波长、波速与频率的关系
【解析】【解答】AB.由图可知乙质点L的振动情况,该时刻质点L向y轴正方向振动。根据上下坡法或者平移法可知,该横波沿x轴正方向传播,质点N该时刻向y轴负方向运动,A不符合题意,B符合题意;
C.质点L只在平衡位置附近y轴方向上下振动,波传播时,质点不会沿x轴正方向移动,C不符合题意;
D.该时刻质点K与M的速度为零,质点K加速度为-y方向,质点M加速度为+y方向,D不符合题意。
故答案为:B。
【分析】通过甲图读出波的波长,通过乙图读出波的周期,进而求出波速,再结合选项逐一分析即可。
7.【答案】B
【知识点】电场强度;电势能;电势
【解析】【解答】A.正电荷和负电荷周围的等势面都为一组同心球壳,该点电荷不一定为正电荷,A不符合题意;
B.相邻等势面间电势差相等,P点附近的等差等势面更加密集,故P点的场强一定比Q点的场强大,B符合题意;
C.正电荷和负电荷周围的等势面都为一组同心球壳,若为正点电荷,则P点电势一定比Q点电势高,C不符合题意;
D.从等势面的情况无法判断该点电荷为正点电荷还是负点电荷,无法判断P点电势与Q点电势的高低,就无法判断正检验电荷在P点和在Q点的电势能的大小,D不符合题意。
故答案为:B。
【分析】等差等势面密集的地方,电场强度比较大,沿电场线方向电势减小,电场力做正功,电势能减小,电场力做负功,电势能增加。
8.【答案】B
【知识点】安培力
【解析】【解答】AB.小磁针发生偏转是因为带负电荷的橡胶圆盘高速旋转形成电流,而电流周围有磁场,磁场会对放入其中的小磁针有力的作用,A不符合题意,B符合题意;
C.仅改变圆盘的转动方向,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,C不符合题意;
D.仅改变圆盘所带电荷的电性,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,D不符合题意。
故答案为:B。
【分析】旋转的带电圆盘形成电流,电流周围存在磁场,与小磁针的磁场相互作用。
9.【答案】A
【知识点】电路动态分析
【解析】【解答】开关S闭合时,副线圈总的电阻减小,由于变压器的匝数比和输入的电压都不变,所以输出的电压也不变,即V1示数不变,但因副线圈的总电阻减小,则副线圈的总电流增大,则原线圈的电流增大,A1的示数变大;由于副线圈的电流增大,故串联在副线圈的电阻R两端的电压增大,而副线圈的总电压不变,所以副线圈并联部分的电压减小,即 的示数减小,故电流表 的示数减小,A符合题意,BCD不符合题意。
故答案为:A。
【分析】开光闭合,接入电路中的电阻变小,结合欧姆定律求解电流、电压的变化。
10.【答案】D
【知识点】分子间的作用力
【解析】【解答】A.从 到 分子间引力、斥力都在增加,但斥力增加得更快,A不符合题意;
B.由图可知,在 时分子力为零,故从 到 分子力的大小先增大后减小再增大,B不符合题意;
C.分子势能在 时分子势能最小,故从 到 分子势能一直减小,C不符合题意;
D.从 到 分子势能先减小后增大,故分子动能先增大后减小,D符合题意。
故答案为:D。
【分析】当分子间距小于平衡距离时,增大分子间距,分子力减小;当分子间距大于平衡距离时,增大分子间距,分子力先增加后减小;当分子间距增大时, 引力和斥力都会减小,只是两种力减小的快慢不同;分子力与移动方向相同,分子力做正功,势能减小,方向相反,分子力做负功,分子势能增加。
11.【答案】C
【知识点】滑动摩擦力与动摩擦因数
【解析】【解答】A.动摩擦力大小与是否匀速直线运动无关,A不符合题意;
B.图乙曲线是拉力F随时间的变化曲线,B不符合题意;
C.由图可知,最大静摩擦力约为10N,滑动摩擦力约为7N,故最大静摩擦力与滑动摩擦力之比约为10:7,C符合题意;
D.根据 , 可知,由于不知道物块的重力,故无法求物块与木板间的动摩擦因数,D不符合题意。
故答案为:C。
【分析】当物体做匀速直线运动时,物体受到的拉力等于摩擦力,结合压力大小求解动摩擦因数。
12.【答案】B
【知识点】欧姆定律
【解析】【解答】由甲图可知, 点对应的电阻阻值较小,由闭合电路欧姆定律知对应电路中的电流较大,故 应标在电流较大的刻度上;而 点对应的电阻阻值较大,由闭合电路欧姆定律知对应电路中的电流较小,故 应标在电流较小的刻度上;由图甲得
其中 为图线的纵截距,由闭合电路欧姆定律得
联立解得
可知t与I是非线性关系,B符合题意,ACD不符合题意。
故答案为:B。
【分析】对电路应用闭合电路欧姆定律列方程,结合电阻随时间的变化分析温度与电流的变化即可。
13.【答案】D
【知识点】机械能守恒及其条件;动量守恒定律
【解析】【解答】A.1号球与质量不同的2号球相碰撞后,1号球速度不为零,则2号球获得的动能小于1号球撞2号球前瞬间的动能,所以2号球与3号球相碰撞后,3号球获得的动能也小于1号球撞2号球前瞬间的动能,则3号不可能摆至高度 ,A不符合题意;
B.1、2号球释放后,三小球之间的碰撞为弹性碰撞,且三小球组成的系统只有重力做功,所以系统的机械能守恒,但整个过程中,系统所受合外力不为零,所以系统动量不守恒,B不符合题意;
C.1、2号碰撞后粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,所以1、2号球再与3号球相碰后,3号球获得的动能不足以使其摆至高度 ,C不符合题意;
D.碰撞后,2、3号粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,且整个过程中,系统所受合外力不为零,所以系统的机械能和动量都不守恒,D符合题意。
故答案为:D。
【分析】如果一个系统不受到外力的作用,那么动量就是守恒的,如果一个系统,除重力外,不受到外力和非保守内力,那么这个系统机械能守恒,结合选项中物体的受力情况分析求解即可。
14.【答案】C
【知识点】受力分析的应用
【解析】【解答】A.篮球未转动时,篮球竖直下落,没有受到偏转力 的作用,而篮球转动时,将受到偏转力 的作用,所以偏转力 中的 与篮球转动角速度有关,A不符合题意;
B.空气阻力一直对篮球做负功,篮球的机械能将减小,篮球的角速度也将减小,所以篮球没有足够的能量回到原高度,B不符合题意;
C.篮球下落过程中,其受力情况如下图所示
篮球下落过程中,由受力分析可知,随着速度不断增大,篮球受到 和 的合力沿竖直方向的分力可能比重力大,可使篮球竖直方向的分速度减小为零或变成竖直向上,所以篮球可能向上运动,C符合题意;
D.如果篮球的速度变成水平方向,则空气阻力的作用会使篮球速度减小,则篮球受到的偏转力 将变小,不能保持 与重力持续等大反向,所以不可能在空中持续一段水平直线运动,D不符合题意。
故答案为:C。
【分析】结合篮球的速度方向对篮球进行受力分析,结合篮球的受力情况,结合选项分析篮球的运动状态。
15.【答案】(1)B
(2)
(3)A;D
【知识点】探究加速度与力、质量的关系
【解析】【解答】(1)为了探究加速度与质量的关系,必须控制小车所受拉力相同,而让小车的质量不同,所以钩码质量相同,B符合题意。(2)数据描点和 图像如图所示
;(3)A.使小车沿倾角合适的斜面运动,小车所受重力沿斜面的分力刚好等于小车所受的摩擦力,则小车受力可等效为只受绳的拉力,A符合题意;
B.若斜面倾角过大,重力沿斜面的分力大于摩擦力,小车所受合力将大于绳的拉力,不利于简化“力”的测量,B不符合题意;
C.由牛顿第二定律可知,无论小车运动的加速度多大,砂和桶的重力都大于绳的拉力,C不符合题意;
D.当小车的运动趋近于匀速运动时,砂和桶可近似看成受力平衡,则砂和桶的重力才近似等于绳的拉力,D符合题意。
故答案为:AD。
【分析】(1)三个变量,探究其中两个变量之间的关系,需要用到控制变量法;
(2)结合表格中的数据在坐标系中描点连线即可;
(3)当m<16.【答案】(1) , ,将电源和电流表视为等效电源,电源电动势是电源本身具有的属性,电流表不具有产生电动势的本领,所以等效电源的电动势仍然为
而电流表的内阻和电动势的内阻作为等效电源的内阻,即
(2)C;A
(3)乙
【知识点】电池电动势和内阻的测量
【解析】【解答】(1)将电源和电流表视为等效电源,电源电动势是电源本身具有的属性,电流表不具有产生电动势的本领,所以等效电源的电动势仍然为
而电流表的内阻和电动势的内阻作为等效电源的内阻,即 (2)对甲图,考虑电表内阻时,根据闭合电路欧姆定律得
变形得
直接通过实验获得数据,可得
图像与纵轴截距均为电源电动势 ,虚线对应的斜率大小为 ,实线对应的斜率大小为 ,所以对应图甲电路分析的 图像是C;对乙图,考虑电表内阻时(即虚线对应的真实情况),根据闭合电路欧姆定律得
变形得
直接通过实验获得数据,可得
虚线对应的斜率大小为 ,实线对应的斜率大小为 ,虚线对应的纵轴截距为 ,实线对应的纵轴截距为 ;两图线在 时,对应的短路电流均为 ,所以对应图乙电路分析的 图像是A。(3)图甲虽然测量的电源电动势准确,但电流表分压较为明显,所以内阻测量的误差很大;图乙虽然电动势和内阻测量均偏小,但是电压表内阻很大,分流不明显,所以电动势和内阻的测量误差较小,所以选择图乙可以减小由电表内电阻引起的实验误差。
【分析】(1)等效电源的电压等于电源电压,内阻等于两电阻之和;
(2)对于电源的伏安特性曲线来说,图像与纵坐标的交点为电源的电动势,图像斜率的相反数为电源的内阻;
(3)电压表分流不明显,对电动势和内阻的影响比较小。
17.【答案】(1)解:包裹脱离无人机后做平抛运动,在竖直方向做自由落体运动,则
解得
水平方向上做匀速直线运动,所以水平距离为
(2)解:包裹落地时,竖直方向速度为
落地时速度为
(3)解:包裹做平抛运动,分解位移
两式消去时间得包裹的轨迹方程为
【知识点】平抛运动
【解析】【分析】(1)物体做平抛运动,水平方向匀速运动,竖直方向自由落体运动,利用竖直方向的距离求出运动时间,根据初速度求解水平方向的位移;
(2)结合物体的运动时间求解落地时的水平速度和竖直速度,合成求解总速度;
(3)物体做平抛运动,水平方向匀速运动,竖直方向自由落体运动,分别利用运动学公式列方程求解运动轨迹。
18.【答案】(1)解:根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻 的电流方向为 。
(2)解:根据法拉第电磁感应定律
(3)解:电阻 两端的电压为路端电压,根据分压规律可知
【知识点】欧姆定律;法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向
(2)利用法拉第电磁感应定律求解电压的大小;
(3)利用欧姆定律求解回路中电流的大小,再利用部分电路欧姆定律求解外电路电压。
19.【答案】(1)解:a.在柱面和导线之间,只加恒定电压 ,粒子刚好没有电子到达柱面,此时速度为零,根据动能定理有
解得
b.在柱面内,只加与 平行的匀强磁场,磁感应强度为 时,刚好没有电子到达柱面,设粒子的偏转半径为r,根据几何关系有
根据洛伦兹力提供向心力,则有
解得
(2)解:撤去柱面,设单位长度射出电子数为n,则单位时间都到柱面的粒子数为
金属片上电流
所以:n=
根据动量定理有得金属片上的压强为:
解得
故总动能为
【知识点】带电粒子在电场中的加速;带电粒子在匀强磁场中的运动
【解析】【分析】(1)粒子在电场的作用下做加速运动,利用动能定理求解末速度的大小,带电粒子在磁场中受到洛伦兹力,在洛伦兹力的作用下粒子做圆周运动,利用几何关系求解轨道半径,再结合选项分析求解粒子速度;
(2)电流是描述电荷流量的物理量,电流越大,单位时间内流过的电荷量就越多,电流的微观表达式结合电子的密度和流速求解即可。
20.【答案】(1)解:由图1可知,列车速度从 降至 的过程加速度为0.7m/s2的匀减速直线运动,由加速度的定义式

由速度位移公式

(2)解:由MN沿导轨向右运动切割磁场线产生感应电动势
回路中感应电流
MN受到的安培力
加速度为
结合上面几式得
所以棒的加速度与棒的速度为正比例函数。又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,所以列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数。画出的图线如下图所示。
(3)解:由(2)可知,列车速度越小,电气制动的加速度越小。由题设可知列车还会受到随车速减小而减小的空气阻力。所以电气制动和空气阻力产生的加速度都随速度的减小而减小。由图1 中,列车速度从 降至 的过程中加速度大小 随速度v减小而增大,所以列车速度从 降至 的过程中所需的机械制动逐渐变强,所以列车速度为 附近所需机械制动最强。
【知识点】安培力;牛顿第二定律;左手定则—磁场对通电导线的作用;法拉第电磁感应定律
【解析】【分析】(1)结合物体的速度变化量以及对应的时间,利用加速度的定义式求解物体的加速度,结合物体的初末速度求解物体移动的距离;
(2)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小。利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小,结合牛顿第二定律求解加速度;
(3)列车速度越小,受到的安培力越小,故列车的速度越小,机械制动应该越大。
1 / 12020年北京市高考物理真题试卷(新高考)
一、选择题(本题共14小题,共42分)
1.(2020·北京)以下现象不属于干涉的是(  )
A.白光经过杨氏双缝得到彩色图样
B.白光照射肥皂膜呈现彩色图样
C.白光经过三棱镜得到彩色图样
D.白光照射水面油膜呈现彩色图样
【答案】C
【知识点】光的干涉
【解析】【解答】A.根据光的干涉定义可知白光经过杨氏双缝得到彩色图样是杨氏双缝干涉,A不符合题意;
B.由于重力的作用,肥皂膜形成了上薄下厚的薄膜,光线通过薄膜时频率不变,干涉条纹的产生是由于光线在薄膜前后两表面反射形成的两列光波的叠加,白光照射肥皂膜呈现彩色图样是属于干涉现象,B不符合题意;
C.白光经过三棱镜得到彩色图样是光在折射时产生的色散现象,C符合题意;
D.水面上的油膜呈现彩色是光的干涉现象,属于薄膜干涉,D不符合题意;
故答案为:C。
【分析】太阳光经过三棱镜折射后会形成彩色光带,该现象叫做光的色散,并非光的干涉。
2.(2020·北京)氢原子能级示意如图。现有大量氢原子处于 能级上,下列说法正确的是(  )
A.这些原子跃迁过程中最多可辐射出2种频率的光子
B.从 能级跃迁到 能级比跃迁到 能级辐射的光子频率低
C.从 能级跃迁到 能级需吸收 的能量
D. 能级的氢原子电离至少需要吸收 的能量
【答案】C
【知识点】氢原子光谱
【解析】【解答】A.大量氢原子处于 能级跃迁到 最多可辐射出 种不同频率的光子,A不符合题意;
B.根据能级图可知从 能级跃迁到 能级辐射的光子能量为
从 能级跃迁到 能级辐射的光子能量为
比较可知从 能级跃迁到 能级比跃迁到 能级辐射的光子频率高,B不符合题意;
C.根据能级图可知从 能级跃迁到 能级,需要吸收的能量为 ,C符合题意;
D.根据能级图可知氢原子处于 能级的能量为-1.51eV,故要使其电离至少需要吸收1.51eV的能量,D不符合题意;
故答案为:C。
【分析】当电子由低能级跃迁到高能级时,电子需要吸收能量,当电子由高能级跃迁到低能级时,电子需要释放能量,结合公式求解产生或吸收光子的频率。
3.(2020·北京)随着通信技术的更新换代,无线通信使用的电磁波频率更高,频率资源更丰富,在相同时间内能够传输的信息量更大。第5代移动通信技术(简称5G)意味着更快的网速和更大的网络容载能力,“4G改变生活,5G改变社会”。与4G相比,5G使用的电磁波(  )
A.光子能量更大 B.衍射更明显
C.传播速度更大 D.波长更长
【答案】A
【知识点】光的波粒二象性
【解析】【解答】A.因为5G使用的电磁波频率比4G高,根据 可知5G使用的电磁波比4G光子能量更大,A符合题意;
B.发生明显衍射的条件是障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小;因5G使用的电磁波频率更高,即波长更短,故5G越不容易发生明显衍射,B不符合题意;
C.光在真空中的传播速度都是相同的;光在介质中的传播速度为
5G的频率比4G高,而频率越大折射率越大,光在介质中的传播速度越小,C不符合题意;
D.因5G使用的电磁波频率更高,根据
可知波长更短,D不符合题意。
故答案为:A。
【分析】根据德布罗意关系可以得到,当粒子的动量越小,对应的波长就越长,波动性就越明显。
4.(2020·北京)如图所示,一定量的理想气体从状态A开始,经历两个过程,先后到达状态B和C。有关A、B和C三个状态温度 和 的关系,正确的是(  )
A. B.
C. D.
【答案】C
【知识点】气体的变化图像P-V图、P-T图、V-T图
【解析】【解答】由图可知状态A到状态B是一个等压过程,根据
因为VB>VA,故TB>TA;而状态B到状态C是一个等容过程,有
因为pB>pC,故TB>TC;对状态A和C有
可得TA=TC;综上分析可知C符合题意,ABD不符合题意;
故答案为:C。
【分析】对于P-T图像,从图中得到气体处在某种状态的压强和温度,根据理想气体物态方程求解体积的变化即可。
5.(2020·北京)我国首次火星探测任务被命名为“天问一号”。已知火星质量约为地球质量的10%,半径约为地球半径的50%,下列说法正确的是(  )
A.火星探测器的发射速度应大于地球的第二宇宙速度
B.火星探测器的发射速度应介于地球的第一和第二宇宙速度之间
C.火星的第一宇宙速度大于地球的第一宇宙速度
D.火星表面的重力加速度大于地球表面的重力加速度
【答案】A
【知识点】第一、第二与第三宇宙速度
【解析】【解答】A.当发射速度大于第二宇宙速度时,探测器将脱离地球的引力在太阳系的范围内运动,火星在太阳系内,所以火星探测器的发射速度应大于第二宇宙速度,A符合题意;
B.第二宇宙速度是探测器脱离地球的引力到太阳系中的临界条件,当发射速度介于地球的第一和第二宇宙速度之间时,探测器将围绕地球运动,B不符合题意;
C.万有引力提供向心力,则有
解得第一宇宙速度为
所以火星的第一宇宙速度为
所以火星的第一宇宙速度小于地球的第一宇宙速度,C不符合题意;
D. 万有引力近似等于重力,则有
解得星表面的重力加速度
所以火星表面的重力加速度小于地球表面的重力加速度,D不符合题意。
故答案为:A。
【分析】卫星发射速度达到第一宇宙速度,围绕着地球运动,发射速度达到第二宇宙速度,会脱离地球的引力,围绕着太阳运动,发射速度达到第三宇宙速度,会脱离太阳的引力,飞出太阳系。
6.(2020·北京)一列简谐横波某时刻波形如图甲所示。由该时刻开始计时,质点L的振动情况如图乙所示。下列说法正确的是(  )
A.该横波沿 轴负方向传播
B.质点N该时刻向y轴负方向运动
C.质点L经半个周期将沿 轴正方向移动
D.该时刻质点K与M的速度、加速度都相同
【答案】B
【知识点】简谐运动的表达式与图象;横波的图象;波长、波速与频率的关系
【解析】【解答】AB.由图可知乙质点L的振动情况,该时刻质点L向y轴正方向振动。根据上下坡法或者平移法可知,该横波沿x轴正方向传播,质点N该时刻向y轴负方向运动,A不符合题意,B符合题意;
C.质点L只在平衡位置附近y轴方向上下振动,波传播时,质点不会沿x轴正方向移动,C不符合题意;
D.该时刻质点K与M的速度为零,质点K加速度为-y方向,质点M加速度为+y方向,D不符合题意。
故答案为:B。
【分析】通过甲图读出波的波长,通过乙图读出波的周期,进而求出波速,再结合选项逐一分析即可。
7.(2020·北京)真空中某点电荷的等势面示意如图,图中相邻等势面间电势差相等。下列说法正确的是(  )
A.该点电荷一定为正电荷
B.P点的场强一定比Q点的场强大
C.P点电势一定比Q点电势低
D.正检验电荷在P点比在Q点的电势能大
【答案】B
【知识点】电场强度;电势能;电势
【解析】【解答】A.正电荷和负电荷周围的等势面都为一组同心球壳,该点电荷不一定为正电荷,A不符合题意;
B.相邻等势面间电势差相等,P点附近的等差等势面更加密集,故P点的场强一定比Q点的场强大,B符合题意;
C.正电荷和负电荷周围的等势面都为一组同心球壳,若为正点电荷,则P点电势一定比Q点电势高,C不符合题意;
D.从等势面的情况无法判断该点电荷为正点电荷还是负点电荷,无法判断P点电势与Q点电势的高低,就无法判断正检验电荷在P点和在Q点的电势能的大小,D不符合题意。
故答案为:B。
【分析】等差等势面密集的地方,电场强度比较大,沿电场线方向电势减小,电场力做正功,电势能减小,电场力做负功,电势能增加。
8.(2020·北京)如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针。现驱动圆盘绕中心轴高速旋转,小磁针发生偏转。下列说法正确的是(  )
A.偏转原因是圆盘周围存在电场
B.偏转原因是圆盘周围产生了磁场
C.仅改变圆盘的转动方向,偏转方向不变
D.仅改变圆盘所带电荷的电性,偏转方向不变
【答案】B
【知识点】安培力
【解析】【解答】AB.小磁针发生偏转是因为带负电荷的橡胶圆盘高速旋转形成电流,而电流周围有磁场,磁场会对放入其中的小磁针有力的作用,A不符合题意,B符合题意;
C.仅改变圆盘的转动方向,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,C不符合题意;
D.仅改变圆盘所带电荷的电性,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,D不符合题意。
故答案为:B。
【分析】旋转的带电圆盘形成电流,电流周围存在磁场,与小磁针的磁场相互作用。
9.(2020·北京)如图所示, 理想变压器原线圈接在 的交流电源上, 副线圈接三个阻值相同的电阻R,不计电表内电阻影响。闭合开关S后(  )
A.电流表 的示数减小 B.电压表 的示数减小
C.电压表 的示数不变 D.电流表 的示数不变
【答案】A
【知识点】电路动态分析
【解析】【解答】开关S闭合时,副线圈总的电阻减小,由于变压器的匝数比和输入的电压都不变,所以输出的电压也不变,即V1示数不变,但因副线圈的总电阻减小,则副线圈的总电流增大,则原线圈的电流增大,A1的示数变大;由于副线圈的电流增大,故串联在副线圈的电阻R两端的电压增大,而副线圈的总电压不变,所以副线圈并联部分的电压减小,即 的示数减小,故电流表 的示数减小,A符合题意,BCD不符合题意。
故答案为:A。
【分析】开光闭合,接入电路中的电阻变小,结合欧姆定律求解电流、电压的变化。
10.(2020·北京)分子力 随分子间距离 的变化如图所示。将两分子从相距 处释放,仅考虑这两个分于间的作用,下列说法正确的是(  )
A.从 到 分子间引力、斥力都在减小
B.从 到 分子力的大小先减小后增大
C.从 到 分子势能先减小后增大
D.从 到 分子动能先增大后减小
【答案】D
【知识点】分子间的作用力
【解析】【解答】A.从 到 分子间引力、斥力都在增加,但斥力增加得更快,A不符合题意;
B.由图可知,在 时分子力为零,故从 到 分子力的大小先增大后减小再增大,B不符合题意;
C.分子势能在 时分子势能最小,故从 到 分子势能一直减小,C不符合题意;
D.从 到 分子势能先减小后增大,故分子动能先增大后减小,D符合题意。
故答案为:D。
【分析】当分子间距小于平衡距离时,增大分子间距,分子力减小;当分子间距大于平衡距离时,增大分子间距,分子力先增加后减小;当分子间距增大时, 引力和斥力都会减小,只是两种力减小的快慢不同;分子力与移动方向相同,分子力做正功,势能减小,方向相反,分子力做负功,分子势能增加。
11.(2020·北京)某同学利用图甲所示装置研究摩擦力的变化情况。实验台上固定一个力传感器,传感器用棉线拉住物块,物块放置在粗糙的长木板上。水平向左拉木板,传感器记录的 图像如图乙所示。下列说法正确的是(  )
A.实验中必须让木板保持匀速运动
B.图乙中曲线就是摩擦力随时间的变化曲线
C.最大静摩擦力与滑动摩擦力之比约为10:7
D.只用图乙中数据可得出物块与木板间的动摩擦因数
【答案】C
【知识点】滑动摩擦力与动摩擦因数
【解析】【解答】A.动摩擦力大小与是否匀速直线运动无关,A不符合题意;
B.图乙曲线是拉力F随时间的变化曲线,B不符合题意;
C.由图可知,最大静摩擦力约为10N,滑动摩擦力约为7N,故最大静摩擦力与滑动摩擦力之比约为10:7,C符合题意;
D.根据 , 可知,由于不知道物块的重力,故无法求物块与木板间的动摩擦因数,D不符合题意。
故答案为:C。
【分析】当物体做匀速直线运动时,物体受到的拉力等于摩擦力,结合压力大小求解动摩擦因数。
12.(2020·北京)图甲表示某金属丝的电阻 随摄氏温度 变化的情况。把这段金属丝与电池、电流表串联起来(图乙),用这段金属丝做测温探头,把电流表的刻度改为相应的温度刻度,就得到了一个简易温度计。下列说法正确的是(  )
A. 应标在电流较大的刻度上,且温度与电流是线性关系
B. 应标在电流较大的刻度上,且温度与电流是非线性关系
C. 应标在电流较大的刻度上,且温度与电流是线性关系
D. 应标在电流较大的刻度上,且温度与电流是非线性关系
【答案】B
【知识点】欧姆定律
【解析】【解答】由甲图可知, 点对应的电阻阻值较小,由闭合电路欧姆定律知对应电路中的电流较大,故 应标在电流较大的刻度上;而 点对应的电阻阻值较大,由闭合电路欧姆定律知对应电路中的电流较小,故 应标在电流较小的刻度上;由图甲得
其中 为图线的纵截距,由闭合电路欧姆定律得
联立解得
可知t与I是非线性关系,B符合题意,ACD不符合题意。
故答案为:B。
【分析】对电路应用闭合电路欧姆定律列方程,结合电阻随时间的变化分析温度与电流的变化即可。
13.(2020·北京)在同一竖直平面内,3个完全相同的小钢球(1号、2号、3号)悬挂于同一高度;静止时小球恰能接触且悬线平行,如图所示。在下列实验中,悬线始终保持绷紧状态,碰撞均为对心正碰。以下分析正确的是(  )
A.将1号移至高度 释放,碰撞后,观察到2号静止、3号摆至高度 。若2号换成质量不同的小钢球,重复上述实验,3号仍能摆至高度
B.将1、2号一起移至高度 释放,碰撞后,观察到1号静止,2、3号一起摆至高度 ,释放后整个过程机械能和动量都守恒
C.将右侧涂胶的1号移至高度 释放,1、2号碰撞后粘在一起,根据机械能守恒,3号仍能摆至高度
D.将1号和右侧涂胶的2号一起移至高度 释放,碰撞后,2、3号粘在一起向右运动,未能摆至高度 ,释放后整个过程机械能和动量都不守恒
【答案】D
【知识点】机械能守恒及其条件;动量守恒定律
【解析】【解答】A.1号球与质量不同的2号球相碰撞后,1号球速度不为零,则2号球获得的动能小于1号球撞2号球前瞬间的动能,所以2号球与3号球相碰撞后,3号球获得的动能也小于1号球撞2号球前瞬间的动能,则3号不可能摆至高度 ,A不符合题意;
B.1、2号球释放后,三小球之间的碰撞为弹性碰撞,且三小球组成的系统只有重力做功,所以系统的机械能守恒,但整个过程中,系统所受合外力不为零,所以系统动量不守恒,B不符合题意;
C.1、2号碰撞后粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,所以1、2号球再与3号球相碰后,3号球获得的动能不足以使其摆至高度 ,C不符合题意;
D.碰撞后,2、3号粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,且整个过程中,系统所受合外力不为零,所以系统的机械能和动量都不守恒,D符合题意。
故答案为:D。
【分析】如果一个系统不受到外力的作用,那么动量就是守恒的,如果一个系统,除重力外,不受到外力和非保守内力,那么这个系统机械能守恒,结合选项中物体的受力情况分析求解即可。
14.(2020·北京)在无风的环境,某人在高处释放静止的篮球,篮球竖直下落;如果先让篮球以一定的角速度绕过球心的水平轴转动(如图)再释放,则篮球在向下掉落的过程中偏离竖直方向做曲线运动。其原因是,转动的篮球在运动过程中除受重力外,还受到空气施加的阻力 和偏转力 。这两个力与篮球速度 的关系大致为: ,方向与篮球运动方向相反; ,方向与篮球运动方向垂直。下列说法正确的是(  )
A. 、 是与篮球转动角速度无关的常量
B.篮球可回到原高度且角速度与释放时的角速度相同
C.人站得足够高,落地前篮球有可能向上运动
D.释放条件合适,篮球有可能在空中持续一段水平直线运动
【答案】C
【知识点】受力分析的应用
【解析】【解答】A.篮球未转动时,篮球竖直下落,没有受到偏转力 的作用,而篮球转动时,将受到偏转力 的作用,所以偏转力 中的 与篮球转动角速度有关,A不符合题意;
B.空气阻力一直对篮球做负功,篮球的机械能将减小,篮球的角速度也将减小,所以篮球没有足够的能量回到原高度,B不符合题意;
C.篮球下落过程中,其受力情况如下图所示
篮球下落过程中,由受力分析可知,随着速度不断增大,篮球受到 和 的合力沿竖直方向的分力可能比重力大,可使篮球竖直方向的分速度减小为零或变成竖直向上,所以篮球可能向上运动,C符合题意;
D.如果篮球的速度变成水平方向,则空气阻力的作用会使篮球速度减小,则篮球受到的偏转力 将变小,不能保持 与重力持续等大反向,所以不可能在空中持续一段水平直线运动,D不符合题意。
故答案为:C。
【分析】结合篮球的速度方向对篮球进行受力分析,结合篮球的受力情况,结合选项分析篮球的运动状态。
二、实验题(本题共2小题,共18分)
15.(2020·北京)在“探究加速度与物体受力、物体质量的关系”实验中,做如下探究:
(1)为猜想加速度与质量的关系,可利用图1所示装置进行对比实验。两小车放在水平板上,前端通过钩码牵引,后端各系一条细线,用板擦把两条细线按在桌上,使小车静止。抬起板擦,小车同时运动,一段时间后按下板擦,小车同时停下。对比两小车的位移,可知加速度与质量大致成反比。关于实验条件,下列正确的是:________(选填选项前的字母)。
A.小车质量相同,钩码质量不同
B.小车质量不同,钩码质量相同
C.小车质量不同,钩码质量不同
(2)某同学为了定量验证(1)中得到的初步关系,设计实验并得到小车加速度 与质量 的7组实验数据,如下表所示。在图2所示的坐标纸上已经描好了6组数据点,请将余下的一组数据描在坐标纸上,并作出 图像。
次数 1 2 3 4 5 6 7
0.62 0.56 0.48 0.40 0.32 0.24 0.15
0.25 0.29 0.33 0.40 0.50 0.71 1.00
(3)在探究加速度与力的关系实验之前,需要思考如何测“力”。请在图3中画出小车受力的示意图。为了简化“力”的测量,下列说法正确的是:__________(选填选项前的字母)。
A.使小车沿倾角合适的斜面运动,小车受力可等效为只受绳的拉力
B.若斜面倾角过大,小车所受合力将小于绳的拉力
C.无论小车运动的加速度多大,砂和桶的重力都等于绳的拉力
D.让小车的运动趋近于匀速运动,砂和桶的重力才近似等于绳的拉力
【答案】(1)B
(2)
(3)A;D
【知识点】探究加速度与力、质量的关系
【解析】【解答】(1)为了探究加速度与质量的关系,必须控制小车所受拉力相同,而让小车的质量不同,所以钩码质量相同,B符合题意。(2)数据描点和 图像如图所示
;(3)A.使小车沿倾角合适的斜面运动,小车所受重力沿斜面的分力刚好等于小车所受的摩擦力,则小车受力可等效为只受绳的拉力,A符合题意;
B.若斜面倾角过大,重力沿斜面的分力大于摩擦力,小车所受合力将大于绳的拉力,不利于简化“力”的测量,B不符合题意;
C.由牛顿第二定律可知,无论小车运动的加速度多大,砂和桶的重力都大于绳的拉力,C不符合题意;
D.当小车的运动趋近于匀速运动时,砂和桶可近似看成受力平衡,则砂和桶的重力才近似等于绳的拉力,D符合题意。
故答案为:AD。
【分析】(1)三个变量,探究其中两个变量之间的关系,需要用到控制变量法;
(2)结合表格中的数据在坐标系中描点连线即可;
(3)当m<16.(2020·北京)用图1所示的甲、乙两种方法测量某电源的电动势和内电阻(约为1Ω)。其中R为电阻箱,电流表的内电阻约为0.1Ω,电压表的内电阻约为3kΩ。
(1)利用图1中甲图实验电路测电源的电动势E和内电阻r,所测量的实际是图2中虚线框所示“等效电源”的电动势 和内电阻 。若电流表内电阻用 表示,请你用E、r和RA表示出 、 ,并简要说明理由。
(2)某同学利用图像分析甲、乙两种方法中由电表内电阻引起的实验误差。在图3中,实线是根据实验数据(图甲:U=IR,图乙: )描点作图得到的U-I图像;虚线是该电源的路端电压U随电流I变化的U-I图像(没有电表内电阻影响的理想情况)。
在图3中,对应图甲电路分析的U-I图像是:   ;对应图乙电路分析的U-I图像是:   。
(3)综合上述分析,为了减小由电表内电阻引起的实验误差,本实验应选择图1中的   (填“甲”或“乙”)。
【答案】(1) , ,将电源和电流表视为等效电源,电源电动势是电源本身具有的属性,电流表不具有产生电动势的本领,所以等效电源的电动势仍然为
而电流表的内阻和电动势的内阻作为等效电源的内阻,即
(2)C;A
(3)乙
【知识点】电池电动势和内阻的测量
【解析】【解答】(1)将电源和电流表视为等效电源,电源电动势是电源本身具有的属性,电流表不具有产生电动势的本领,所以等效电源的电动势仍然为
而电流表的内阻和电动势的内阻作为等效电源的内阻,即 (2)对甲图,考虑电表内阻时,根据闭合电路欧姆定律得
变形得
直接通过实验获得数据,可得
图像与纵轴截距均为电源电动势 ,虚线对应的斜率大小为 ,实线对应的斜率大小为 ,所以对应图甲电路分析的 图像是C;对乙图,考虑电表内阻时(即虚线对应的真实情况),根据闭合电路欧姆定律得
变形得
直接通过实验获得数据,可得
虚线对应的斜率大小为 ,实线对应的斜率大小为 ,虚线对应的纵轴截距为 ,实线对应的纵轴截距为 ;两图线在 时,对应的短路电流均为 ,所以对应图乙电路分析的 图像是A。(3)图甲虽然测量的电源电动势准确,但电流表分压较为明显,所以内阻测量的误差很大;图乙虽然电动势和内阻测量均偏小,但是电压表内阻很大,分流不明显,所以电动势和内阻的测量误差较小,所以选择图乙可以减小由电表内电阻引起的实验误差。
【分析】(1)等效电源的电压等于电源电压,内阻等于两电阻之和;
(2)对于电源的伏安特性曲线来说,图像与纵坐标的交点为电源的电动势,图像斜率的相反数为电源的内阻;
(3)电压表分流不明显,对电动势和内阻的影响比较小。
三、解答题
17.(2020·北京)无人机在距离水平地面高度 处,以速度 水平匀速飞行并释放一包裹,不计空气阻力,重力加速度为 。
(1)求包裹释放点到落地点的水平距离 ;
(2)求包裹落地时的速度大小 ;
(3)以释放点为坐标原点,初速度方向为 轴方向,竖直向下为 轴方向,建立平面直角坐标系,写出该包裹运动的轨迹方程。
【答案】(1)解:包裹脱离无人机后做平抛运动,在竖直方向做自由落体运动,则
解得
水平方向上做匀速直线运动,所以水平距离为
(2)解:包裹落地时,竖直方向速度为
落地时速度为
(3)解:包裹做平抛运动,分解位移
两式消去时间得包裹的轨迹方程为
【知识点】平抛运动
【解析】【分析】(1)物体做平抛运动,水平方向匀速运动,竖直方向自由落体运动,利用竖直方向的距离求出运动时间,根据初速度求解水平方向的位移;
(2)结合物体的运动时间求解落地时的水平速度和竖直速度,合成求解总速度;
(3)物体做平抛运动,水平方向匀速运动,竖直方向自由落体运动,分别利用运动学公式列方程求解运动轨迹。
18.(2020·北京)如图甲所示, 匝的线圈(图中只画了2匝),电阻 ,其两端与一个 的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻 的电流方向;
(2)求线圈产生的感应电动势 ;
(3)求电阻 两端的电压 。
【答案】(1)解:根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻 的电流方向为 。
(2)解:根据法拉第电磁感应定律
(3)解:电阻 两端的电压为路端电压,根据分压规律可知
【知识点】欧姆定律;法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向
(2)利用法拉第电磁感应定律求解电压的大小;
(3)利用欧姆定律求解回路中电流的大小,再利用部分电路欧姆定律求解外电路电压。
19.(2020·北京)如图甲所示,真空中有一长直细金属导线 ,与导线同轴放置一半径为 的金属圆柱面。假设导线沿径向均匀射出速率相同的电子,已知电子质量为 ,电荷量为 。不考虑出射电子间的相互作用。
(1)可以用以下两种实验方案测量出射电子的初速度:
a.在柱面和导线之间,只加恒定电压;
b.在柱面内,只加与 平行的匀强磁场。
当电压为 或磁感应强度为 时,刚好没有电子到达柱面。分别计算出射电子的初速度 。
(2)撤去柱面,沿柱面原位置放置一个弧长为 、长度为 的金属片,如图乙所示。在该金属片上检测到出射电子形成的电流为 ,电子流对该金属片的压强为 。求单位长度导线单位时间内出射电子的总动能。
【答案】(1)解:a.在柱面和导线之间,只加恒定电压 ,粒子刚好没有电子到达柱面,此时速度为零,根据动能定理有
解得
b.在柱面内,只加与 平行的匀强磁场,磁感应强度为 时,刚好没有电子到达柱面,设粒子的偏转半径为r,根据几何关系有
根据洛伦兹力提供向心力,则有
解得
(2)解:撤去柱面,设单位长度射出电子数为n,则单位时间都到柱面的粒子数为
金属片上电流
所以:n=
根据动量定理有得金属片上的压强为:
解得
故总动能为
【知识点】带电粒子在电场中的加速;带电粒子在匀强磁场中的运动
【解析】【分析】(1)粒子在电场的作用下做加速运动,利用动能定理求解末速度的大小,带电粒子在磁场中受到洛伦兹力,在洛伦兹力的作用下粒子做圆周运动,利用几何关系求解轨道半径,再结合选项分析求解粒子速度;
(2)电流是描述电荷流量的物理量,电流越大,单位时间内流过的电荷量就越多,电流的微观表达式结合电子的密度和流速求解即可。
20.(2020·北京)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小 随速度 的变化曲线。
(1)求列车速度从 降至 经过的时间t及行进的距离x。
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为 ,不计金属棒 及导轨的电阻。 沿导轨向右运动的过程,对应列车的电气制动过程,可假设 棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的 点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从 减到 的过程中,在哪个速度附近所需机械制动最强
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
【答案】(1)解:由图1可知,列车速度从 降至 的过程加速度为0.7m/s2的匀减速直线运动,由加速度的定义式

由速度位移公式

(2)解:由MN沿导轨向右运动切割磁场线产生感应电动势
回路中感应电流
MN受到的安培力
加速度为
结合上面几式得
所以棒的加速度与棒的速度为正比例函数。又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,所以列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数。画出的图线如下图所示。
(3)解:由(2)可知,列车速度越小,电气制动的加速度越小。由题设可知列车还会受到随车速减小而减小的空气阻力。所以电气制动和空气阻力产生的加速度都随速度的减小而减小。由图1 中,列车速度从 降至 的过程中加速度大小 随速度v减小而增大,所以列车速度从 降至 的过程中所需的机械制动逐渐变强,所以列车速度为 附近所需机械制动最强。
【知识点】安培力;牛顿第二定律;左手定则—磁场对通电导线的作用;法拉第电磁感应定律
【解析】【分析】(1)结合物体的速度变化量以及对应的时间,利用加速度的定义式求解物体的加速度,结合物体的初末速度求解物体移动的距离;
(2)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小。利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小,结合牛顿第二定律求解加速度;
(3)列车速度越小,受到的安培力越小,故列车的速度越小,机械制动应该越大。
1 / 1
同课章节目录