多项式乘以多项式

文档属性

名称 多项式乘以多项式
格式 zip
文件大小 11.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-05-10 08:43:33

图片预览

文档简介

课题 多项式乘以多项式 总课时数 7
课型 新授课 编订人 审核人 执教时间 2010、9、9
学习目标 知识目标 让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.
能力目标 经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.
情感目标 通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.
学习重点
学习难点
学习方法 学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.合作交流。
教学过程示标导学知识回顾,导入新课1、单项式乘单项式的法则:2、单项式乘以多项式的法则:出示学习目标出示自学提纲,学生自学课本147—148页自学解疑一、创设情境,操作感知 【动手操作】 首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母. 【教师活动】要求学生根据图中的数据,求一下这个矩形的面积. 【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和. 【学生活动】分四人小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积. 【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab,它们的和为S=mn+nb+am+ab. 【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么? 【学生活动】分四人小组讨论,并交流自己的看法. (m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab. 【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加. 字母呈现: =ma+mb+na+nb. 二、范例学习,应用所学 【例1】计算: (1)(x+2)(x-3) (2)(3x-1)(2x+1) 【例2】计算: (1)(x-3y)(x+7y) (2)(2x+5y)(3x-2y) 【例3】先化简,再求值: (a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去. 【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.
三、随堂练习,巩固新知课本P148练习第1、2题.两个相同字母的一次二项式相乘,积是一个二次三项式,一次项系数是两个常数项的和,常数项是两个常数项的积。例如:(a+3)(a-4) =a2+(3-4)a+3× (-4) =a2-a-12探究提升如果(x2+ax+8)(x2-3x+b)展开后不含常数项和x3项,求a,b的值。当堂达标1、若a≠b,则下列各等式中,不能成立的是( )A、(a-b)2=(b-a)2 B、(a+b) (a-b) =a2 -b2C、(a-b)3=(b-a)3D、(a+b)2=(-b-a)2 2、要使(6x-a)(2x+1)的结果中不含x的一次项,则a等于( )A、0 B、1 C 、 2 D、33、计算下列各题(x+30)(x+40) (3x+y)(-2y+x)(3) (-x3+y)(x3+y)
归纳反思
1.多项式与多项式相乘,应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.
作业设计
课本P149习题15.1第5、6、7(2)、9、10题.