学员个性化教学方案
授课时间: 2012 年 5 月 6 日 学科: 物理 授课方式: 授课老师 刘老师
学员姓名 年级 高三 性别 男 总课时 次 第 次授课
教学主题: 万有引力与航天 教学目标:1.清楚万有引力与天体关系 2.知道万有引力与航天知识 重点难点:掌握几大典型题型 教学过程: 一.万有引力与天体1.开普勒运动定律A. 每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中B. 在相等时间内,太阳和运动中的行星的连线(向量半径)所扫过的面积都是相等的。C. 各个行星绕太阳的椭圆轨道的半长轴的立方和它们的公转周期 ( http: / / www.21cnjy.com / " \o "欢迎登陆21世纪教育网" \t "_blank )的平方成正比。表达式:2.万有引力定律A.定义:自然界中任何两个物体都是相互吸引的,引力的大小与两物体的质量的乘积成正比,与两物体间距离的平方成反比。B.适用条件:两个可以视为质点的物体之间,或者是两个均匀球之间。3.万有引力定律在天体运动中的应用基本思路:万有引力提供向心力——可推出二.万有引力与航天(理解推导)A. 第一宇宙速度(换绕速度):v=7.9km/s,是人类地球卫星的最小发射速度,卫星最大圆周运动速度。B. 第二宇宙速度(脱离速度):v=11.2km/s,是物体挣脱地球引力束缚需要的最小发射速度C. 第三宇宙速度(逃逸速度):v=16.7km/s,是物体挣脱太阳的引力束缚需要的最小发射速度三.具体题型1.重力和万有引力在赤道上的物体随地球自转做圆周运动时,由万有引力定律和牛顿第二定律可得其动力学关系为,式中R、M、、T分别为地球的半径、质量、自转角速度以及自转周期。例1.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球转动的角速度应为原来的( ) A. B. C. D. 例2 如图所示,阴影区域是质量为M、半径为R的球体挖去一个小圆球后的剩余部分,所挖去的小圆球的球心和大球体球心间的距离是,求球体剩余部分对球体外离球心O距离为2R、质量为m的质点P的引力。2.求天体的质量(或密度)A.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由 得 .(式中M、g、R分别表示天体的质量、天体表面的重力加速度和天体的半径.)例3.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球,经过时间t,小球落在星球表面,测得抛出点与落地点之间的距离为L,若抛出时的初速度增大到2倍,则抛出点与落地点间的距离为L,已知两落地点在同一水平面上,该星球的半径为R,引力常量为G,求该星球的质量M和密度ρ.例4.1789年英国著名物理学家卡文迪许首先估算出了地球的平均密度.根据你学过的知识,能否知道地球密度的大小。B.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得若已知卫星的轨道半径r和卫星的运行周期T、角速度或线速度v,可求得中心天体的质量为例5.下列几组数据中能算出地球质量的是(万有引力常量G是已知的)( )A.地球绕太阳运行的周期T和地球中心离太阳中心的距离rB.月球绕地球运行的周期T和地球的半径rC.月球绕地球运动的角速度和月球中心离地球中心的距离rD.月球绕地球运动的周期T和轨道半径r3.近地卫星与同步卫星1)近地卫星:轨道半径近似地球半径R根据人造卫星的动力学关系可得 由此可得线速度v与轨道半径的平方根成反比;角速度与轨道半径的立方的平方根成反比,周期T与轨道半径的立方的平方根成正比;加速度a与轨道半径的平方成反比.例6.两颗人造卫星A、B绕地球做圆周运动,周期之比为,则轨道半径之比和运动速率之比分别为( )A. B. C. D. 2)同步卫星:特点:1周期一定——与地球自转时间相同;2角速度一定;3轨道一定:处于赤道平面,;4环绕速度大小一定:3.08km/s;5向心加速度一定——约0.23米每秒方。例7.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A.已知它的质量是1.24 t,若将它的质量增为2.84 t,其同步轨道半径变为原来的2倍B.它的运行速度为7.9 km/sC.它可以绕过北京的正上方,所以我国能利用其进行电视转播D.它距地面的高度约为地球半径的5倍,所以卫星的向心加速度约为其下方地面上物体的重力加速度的4.求天体的第一宇宙速度问题在其他的星体上发射人造卫星时,第一宇宙速度也可以用类似的方法计算,即,式中的M、R、g 分别表示某星体的质量、半径、星球表面的重力加速度.例8.若取地球的第一宇宙速度为8 km/s,某行星的质量是地球质量的6倍,半径是地球的1.5倍,这顺行星的第一宇宙速度约为( )A. 2 km/s B. 4 km/sC. 16 km/s D. 32 km/s5.人造卫星的变轨问题发射人造卫星要克服地球的引力做功,发射的越高,克服地球的引力做功越多,发射越困难.所以在发射同步卫星时先让它进入一个较低的近地轨道(停泊轨道)A,然后通过点火加速,使之做离心运动,进入一个椭圆轨道(转移轨道)B,当卫星到达椭圆轨道的远地点时,再次通过点火加速使其做离心运动,进人同步轨道C。例9.如图所示,轨道A与轨道B相切于P点,轨道B与轨道C相切于Q点,以下说法正确的是( )A.卫星在轨道B上由P向Q运动的过程中速率越来越小B.卫星在轨道C上经过Q点的速率大于在轨道A上经过P点的速率C.卫星在轨道B上经过P时的向心加速度与在轨道A上经过P点的向心加速度是相等的D.卫星在轨道B上经过Q点时受到地球的引力小于经过P点的时受到地球的引力例10.关于航天飞机与空间站对接问题,下列说法正确的是( )A.先让航天飞机与空间站在同一轨道上,然后让航天飞机加速,即可实现对接B.先让航天飞机与空间站在同一轨道上,然后让航天飞机减速,即可实现对接C.先让航天飞机进入较低的轨道,然后再对其进行加速,即可实现对接D.先让航天飞机进入较高的轨道,然后再对其进行加速,即可实现对接6.双星问题两棵质量可以相比的恒星相互绕着旋转的现象,叫做双星.双星中两棵子星相互绕着旋转看作匀速圆周运动的向心力由两恒星间的万有引力提供.由于力的作用是相互的,所以两子星做圆周运动的向心力大小是相等的,因两子星绕着连线上的一点做圆周运动,所以它们的运动周期是相等的,角速度也是相等的,线速度与两子星的轨道半径成正比.例11.两棵靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是( )A.它们做圆周运动的角速度之比与其质量成反比B.它们做圆周运动的线速度之比与其质量成反比C.它们做圆周运动的半径与其质量成正比D.它们做圆周运动的半径与其质量成反比练习:1. 用天文望远镜长期观测,人们在宇宙中发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质存在的形式和分布有了较深刻的认识,双星系统是由两个星体构成,其中每个星体的线度都小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理,现根据对某一双星系统的光度学测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动。(1)计算该双星系统的运动周期T计算。(2)若实验上观测到的运动周期为T观测,且T观测:T计算=1: (N>1),为了解释T观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质,作为一种简化模型,我们假定在这两个星体边线为直径的球体内均匀分布着暗物质,而不考虑其它暗物质的影响,试根据这一模型和上述观测结果确定该星系间这种暗物质的密度。2.(08全国Ⅱ)我国发射的“嫦娥一号”探月卫星沿近似于圆形轨道绕月飞行。为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。卫星将获得的信息持续用微波信号发回地球。设地球和月球的质量分别为M和m,地球和月球的半径分别为R和R1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r和r1,月球绕地球转动的周期为T。假定在卫星绕月运行的一个周期内卫星轨道平面与地月连心线共面,求在该周期内卫星发射的微波信号因月球遮挡而不能到达地球的时间(用M、m、R、R1、r、r1和T表示,忽略月球绕地球转动对遮挡时间的影响)。