2020-2021学年湖南省怀化市洪江市八年级(下)期末数学试卷(Word版 含解析)

文档属性

名称 2020-2021学年湖南省怀化市洪江市八年级(下)期末数学试卷(Word版 含解析)
格式 doc
文件大小 1.1MB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2021-07-15 06:08:57

图片预览

文档简介

2020-2021学年湖南省怀化市洪江市八年级(下)期末数学试卷
一、选择题(每小题4分,共40分).
1.下面的图形中,既是轴对称图形又是中心对称图形的是(  )
A. B.
C. D.
2.下列各组数据中,不能作为直角三角形边长的是(  )
A.3,5,7 B.6,8,10 C.5,12,13 D.1,2,
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的高,BD=2,那么AD的长为(  )
A.2 B.4 C.6 D.8
4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20
频数(通话次数) 20 16 9 5
则通话时间不超过15min的频率为(  )
A.0.1 B.0.4 C.0.5 D.0.9
5.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=1.2km,BC=1.6km,则M,C两点间的距离为(  )
A.2.0km B.1.2km C.1.0km D.0.5km
6.对于函数y=﹣x﹣1,下列结论正确的是(  )
A.它的图象必经过点(﹣1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
7.如图,在△ABC中,∠B=90°,AD平分∠BAC,BC=10,CD=6,则点D到AC的距离为(  )
A.4 B.6 C.8 D.10
8.下列说法正确的是(  )
A.一组对边相等且有一个角是直角的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线相等且互相垂直的四边形是正方形
D.对角线平分一组对角的平行四边形是菱形
9.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为(  )
A.12 B.10 C.8 D.6
10.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是(  )
A. B.
C. D.
二、填空题(6小题,每小题4分,共24分)
11.若n边形的每一个外角都为45°,则n的值为   .
12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=   .
13.如图,为估计池塘岸边A、B两点间的距离,在池塘的一侧选取点O,分别取OA、OB的中点M、N,测得MN=4m,则A、B两点间的距离是   m.
14.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成   组.
15.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=   .
16.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OAn的长度为   .
三、解答题(8小题,共86分)
17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.
18.画出△ABC关于y轴对称的图形△A1B1C1.求:
(1)△A1B1C1三个顶点的坐标.
(2)△A1B1C1的面积.
19.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别 成绩x(分) 频数(人数) 频率
一 50≤x<60 2 0.04
二 60≤x<70 10 0.2
三 70≤x<80 14 b
四 80≤x<90 a 0.32
五 90≤x<100 8 0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有   名学生参加;
(2)直接写出表中a=   ,b=   ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为   .
20.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?
21.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是   千米/时,t=   小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
23.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点E作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
24.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②如图2,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(每小题4分,共40分)
1.下面的图形中,既是轴对称图形又是中心对称图形的是(  )
A. B.
C. D.
解:A、不是轴对称图形,是中心对称图形;
B、是轴对称图形,也是中心对称图形;
C、是轴对称图形,不是中心对称图形;
D、不是轴对称图形,是中心对称图形.
故选:B.
2.下列各组数据中,不能作为直角三角形边长的是(  )
A.3,5,7 B.6,8,10 C.5,12,13 D.1,2,
解:32+52≠72,故选项A符合题意;
62+82=102,故选项B不符合题意;
52+122=132,故选项C不符合题意;
12+()2=22,故选项D不符合题意;
故选:A.
3.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD是斜边AB上的高,BD=2,那么AD的长为(  )
A.2 B.4 C.6 D.8
解:∵CD⊥AB,∠ACB=90°,
∴∠BDC=90°=∠ACB,
∵∠A=30°,
∴∠B=90°﹣∠A=60°,
∴∠BCD=90°﹣∠B=30°,
∵BD=2,
∴BC=2BD=4,
∴AB=2BC=8,
∴AD=AB﹣BD=8﹣2=6,
故选:C.
4.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:
通话时间x/min 0<x≤5 5<x≤10 10<x≤15 15<x≤20
频数(通话次数) 20 16 9 5
则通话时间不超过15min的频率为(  )
A.0.1 B.0.4 C.0.5 D.0.9
解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次,
∴通话时间不超过15min的频率为=0.9,
故选:D.
5.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=1.2km,BC=1.6km,则M,C两点间的距离为(  )
A.2.0km B.1.2km C.1.0km D.0.5km
解:如图,在直角△ABC中,∠ACB=90°,AC=1.2km,BC=1.6km,
由勾股定理得到:AB===2(km).
∵点M是AB的中点,
∴MC=AB=1km.
故选:C.
6.对于函数y=﹣x﹣1,下列结论正确的是(  )
A.它的图象必经过点(﹣1,3)
B.它的图象经过第一、二、三象限
C.当x>1时,y<0
D.y的值随x值的增大而增大
解:A、当x=﹣1时,y=﹣×(﹣1)﹣1=﹣,
∴函数y=﹣x﹣1的图象经过点(﹣1,﹣);
B、∵k=﹣<0,b=﹣1<0,
∴函数y=﹣x﹣1的图象经过第二、三、四象限;
C、∵k=﹣<0,
∴y随x的增大而减小,
又∵当x=1时,y=﹣×1﹣1=﹣<0,
∴当x>1时,y<0;
D、∵k=﹣<0,
∴y随x的增大而减小.
故选:C.
7.如图,在△ABC中,∠B=90°,AD平分∠BAC,BC=10,CD=6,则点D到AC的距离为(  )
A.4 B.6 C.8 D.10
解:∵BC=10,CD=6,
∴BD=BC﹣CD=10﹣6=4,
△ABC中,∠B=90°,AD平分∠BAC,
∴点D到AC的距离=BD=4.
故选:A.
8.下列说法正确的是(  )
A.一组对边相等且有一个角是直角的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线相等且互相垂直的四边形是正方形
D.对角线平分一组对角的平行四边形是菱形
解:A、一组对边相等且有一个角是直角的四边形不一定是矩形,故本选项不符合题意;
B、对角线互相垂直的四边形不一定是菱形,故本选项不符合题意;
C、对角线相等且互相垂直的四边形不一定是正方形,故本选项不符合题意;
D、正确.
故选:D.
9.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为(  )
A.12 B.10 C.8 D.6
解:∵△AD′C≌△CBA,
∴△AD′F≌△CBF,
∴△AD′F与△CBF面积相等,
设BF=x,则(8﹣x)2=x2+42,
64﹣16x+x2=x2+16,
16x=48,
解得x=3,
∴△AFC的面积=×4×8﹣×3×4=10.
故选:B.
10.在一次函数y=ax﹣a中,y随x的增大而减小,则其图象可能是(  )
A. B.
C. D.
解:在y=ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,
故B正确.
故选:B.
二、填空题(6小题,每小题4分,共24分)
11.若n边形的每一个外角都为45°,则n的值为 8 .
解:∵n边形的的外角和为360°,每一个外角都为45°,
∴n=360°÷45°=8,
故答案为:8.
12.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab= ﹣6 .
解:∵点P(3,a)关于y轴的对称点为Q(b,2),
∴a=2,b=﹣3,
∴ab=﹣6,
故答案为:﹣6.
13.如图,为估计池塘岸边A、B两点间的距离,在池塘的一侧选取点O,分别取OA、OB的中点M、N,测得MN=4m,则A、B两点间的距离是 8 m.
解:∵M、N是OA、OB的中点,即MN是△OAB的中位线,
∴MN=AB,
∴AB=2MN=2×4=8(m).
故答案为:8.
14.一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成 10 组.
解:143﹣50=93,
93÷10=9.3,
所以应该分成10组.
故答案为:10.
15.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m= ﹣3或﹣2 .
解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,
∴,
解得﹣4<m≤﹣2,
而m是整数,
则m=﹣3或﹣2.
故填空答案:﹣3或﹣2.
16.如图,已知OB=1,以OB为直角边作等腰直角三角形A1BO,再以OA1为直角边作等腰直角三角形A2A1O,如此下去,则线段OAn的长度为 ()n .
解:∵△OBA1为等腰直角三角形,OB=1,
∴BA1=OB=1,OA1=OB=;
∵△OA1A2为等腰直角三角形,
∴A1A2=OA1=,OA2=OA1=2;
∵△OA2A3为等腰直角三角形,
∴A2A3=OA2=2,OA3=OA2=2;
∵△OA3A4为等腰直角三角形,
∴A3A4=OA3=2,OA4=OA3=4.
∵△OA4A5为等腰直角三角形,
∴A4A5=OA4=4,OA5=OA4=4,
∵△OA5A6为等腰直角三角形,
∴A5A6=OA5=4,OA6=OA5=8.
∴OAn的长度为()n.
故答案为:()n.
三、解答题(8小题,共86分)
17.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.
【解答】证明:∵AB⊥BC,AD⊥DC,
∴∠B=∠D=90°,
∴△ABC与△ACD为直角三角形,
在Rt△ABC和Rt△ADC中,
∵AB=AD,AC为公共边,
∴Rt△ABC≌Rt△ADC(HL),
∴∠1=∠2.
18.画出△ABC关于y轴对称的图形△A1B1C1.求:
(1)△A1B1C1三个顶点的坐标.
(2)△A1B1C1的面积.
解:(1)如图所示:△A1B1C1三个顶点的坐标:A1(﹣3,4),B1(﹣1,2),C1(﹣5,1);
(2)△A1B1C1的面积为:3×4﹣×2×3﹣×2×2﹣×1×4=5.
19.为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:
组别 成绩x(分) 频数(人数) 频率
一 50≤x<60 2 0.04
二 60≤x<70 10 0.2
三 70≤x<80 14 b
四 80≤x<90 a 0.32
五 90≤x<100 8 0.16
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有 50 名学生参加;
(2)直接写出表中a= 16 ,b= 0.28 ;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 48% .
解:(1)由表格可得,
本次决赛的学生数为:10÷0.2=50,
故答案为:50;
(2)a=50×0.32=16,b=14÷50=0.28,
故答案为:16,0.28;
(3)补全的频数分布直方图如右图所示,
(4)由表格可得,
决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,
故答案为:48%.
20.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,
(1)这个梯子的顶端距地面有多高?
(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?
解:(1)由题意得:AC=25米,BC=7米,
AB==24(米),
答:这个梯子的顶端距地面有24米;
(2)由题意得:BA′=20米,
BC′==15(米),
则:CC′=15﹣7=8(米),
答:梯子的底端在水平方向滑动了8米.
21.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
【解答】(1)证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥DB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
∴四边形ADCE是平行四边形.
∴ED∥BC.
∴∠AOD=∠ACB.
∵∠ACB=90°,
∴∠AOD=∠ACB=90°.
∴平行四边形ADCE是菱形;
(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,
∴AD=DB=CD=6.
∴AB=12,由勾股定理得.
∵四边形DBCE是平行四边形,
∴DE=BC=6.
∴.
22.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是 60 千米/时,t= 3 小时;
(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;
(3)直接写出乙车出发多长时间两车相距120千米.
解:(1)根据图示,可得
乙车的速度是60千米/时,
甲车的速度是:
(360×2)÷(480÷60﹣1﹣1)
=720÷6
=120(千米/小时)
∴t=360÷120=3(小时).
故答案为:60;3.
(2)①当0≤x≤3时,设y=k1x,
把(3,360)代入,可得
3k1=360,
解得k1=120,
∴y=120x(0≤x≤3).
②当3<x≤4时,y=360.
③4<x≤7时,设y=k2x+b,
把(4,360)和(7,0)代入,可得
解得
∴y=﹣120x+840(4<x≤7).
综上所述:甲车距它出发地的路程y与它出发的时间x的函数关系式为y=
(3)①(480﹣60﹣120)÷(120+60)+1
=300÷180+1

=(小时)
②当甲车停留在C地时,
(480﹣360+120)÷60
=240÷60
=4(小时)
③两车都朝A地行驶时,
设乙车出发y小时后两车相距120千米,
则60y﹣[120(y﹣1)﹣360]=120,
所以480﹣60y=120,
所以60y=360,
解得y=6.
综上,可得
乙车出发后两车相距120千米.
23.如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点E作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
解:(1)∵四边形ABCD是正方形,
∴∠ABC=∠ADC=90°,
∠DBC=∠BCA=∠ACD=45°,
∵CE平分∠DCA,
∴∠ACE=∠DCE=∠ACD=22.5°,
∴∠BCE=∠BCA+∠ACE=45°+22.5°=67.5°,
∵∠DBC=45°,
∴∠BEC=180°﹣67.5°﹣45°=67.5°=∠BCE,
∴BE=BC=,
在Rt△BCD中,由勾股定理得:BD==2,
∴DE=BD﹣BE=2﹣;
(2)∵FE⊥CE,
∴∠CEF=90°,
∴∠FEB=∠CEF﹣∠CEB=90°﹣67.5°=22.5°=∠DCE,
∵∠FBE=∠CDE=45°,BE=BC=CD,
∴△FEB≌△ECD,
∴BF=DE=2﹣;
(3)延长GE交AB于F,
由(2)知:DE=BF=2﹣,
由(1)知:BE=BC=,
∵四边形ABCD是正方形,
∴AB∥DC,
∴△DGE∽△BFE,
∴=,
∴=,
解得:DG=3﹣4.
24.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.
(1)当点P经过点C时,求直线DP的函数解析式;
(2)①求△OPD的面积S关于t的函数解析式;
②如图2,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.
(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
解:(1)∵OA=6,OB=10,四边形OACB为长方形,
∴C(6,10).
设此时直线DP解析式为y=kx+b,
把(0,2),C(6,10)分别代入,得

解得
则此时直线DP解析式为y=x+2;
(2)①当点P在线段AC上时,OD=2,高为6,S=6;
当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
②设P(m,10),则PB=PB′=m,如图2,
∵OB′=OB=10,OA=6,
∴AB′==8,
∴B′C=10﹣8=2,
∵PC=6﹣m,
∴m2=22+(6﹣m)2,解得m=
则此时点P的坐标是(,10);
(3)存在,理由为:
因为BD>BC,所以满足条件的点AC上.
若△BDP为等腰三角形,分三种情况考虑:如图3,
①当BD=BP1=OB﹣OD=10﹣2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1==2,
∴AP1=10﹣2,即P1(6,10﹣2);
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E==2,
∴AP3=AE+EP3=2+2,即P3(6,2+2),
综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).
同课章节目录