3.3 轴对称与坐标变化
知识回顾
(1)点P(x,y)关于x轴对称的点的坐标为(x,-y);
(2)点P(x,y)关于y轴对称的点的坐标为(-x,y).
用坐标表示轴对称的性质
△ABC与△A1B1C1关于x轴对称
(1)△ABC与△A1B1C1有怎样的位置关系?
1. △ABC与△A1B1C1在如图所示的直角坐标系中,仔细观察,完成下列各题:
情景导入
对应点的纵坐标互为相反数
对应点的横坐标相同
(2)请在下表中填入点A与A1、点B与B1、点C与C1
的坐标,并思考:这些对应点的坐标之间有什么关系?
C1:
B1:
A1:
C:
B:
A:
(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是 .
对应点的纵坐标相等
对应点的横坐标互为相反数
(2)请在下表中填入点A与A1、点B与B1、点C与C1、点D与D1的坐标,并思考:这些对应点的坐标之间有什么关系?
D1:
C1:
B1:
A1:
D:
C:
B:
A:
(3)如果点P(m,n)在△ABC内,那么它在△A1B1C1内的对应点P1的坐标是 .
3.通过以上学习,你知道关于x轴对称的两个点的坐标之间的关系吗?
关于y轴对称的两个点的坐标之间的关系呢?
关于横轴对称的点,
横坐标相同;
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;
关于y轴对称的两个点的坐标,横坐标互为相反数,纵坐标相同.
关于纵轴对称的点,
纵坐标相同.
获取新知
1
2
3
4
5
6
7
8
0
–1
–2
–3
–4
–5
1
2
3
4
9
10
5
在平面直角坐标系中依次连接下列各点:(0,0), (5,4) ,(3,0),
(5,1) ,(5,-1), (3,0), (4,-2) ,(0,0),你得到了一个怎样的图案?
x
–1
y
坐标变化为:
(x,y)
(0,0)
(5,4)
(3,0)
(5,1)
(5,-1)
(3,0)
(4,-2)
(0,0)
(-x,y)
(0,0)
(-5,4)
(-3,0)
(-5,1)
(-5,-1)
(-3,0)
(-4,-2)
(0,0)
将各坐标的纵坐标保持不变,横坐标都乘以-1 ,则图形怎么变化?
1
2
3
4
5
-1
-2
-3
0
–1
–2
–3
–4
–5
1
2
3
4
-4
-5
5
y
x
两个图形关于y轴对称
将各坐标的纵坐标都乘以-1,横坐标保持不变,则图形怎么变化?
坐标变化为:
(x,y)
(0,0)
(5,4)
(3,0)
(5,1)
(5,-1)
(3,0)
(4,-2)
(0,0)
(x,-y)
(0,0)
(5,-4)
(3,0)
(5,-1)
(5, 1)
(3,0)
(4, 2)
(0,0)
1
2
3
4
5
6
7
8
0
–1
–2
–3
–4
–5
1
2
3
4
5
y
x
与原图形关于x轴对称
图形的点的坐标变化与图形的变化有怎样的关系?
1.横坐标保持不变,纵坐标互为相反数,所得图形与原图形关于 ________成轴对称.
x轴
2.纵坐标保持不变,横坐标互为相反数,所得图形与原图形关于 ______成轴对称.
y轴
归纳总结
1. 平面直角坐标系中,点P( 2,3)关于x轴对称的点的坐标为 .
2. 已知点A(a,1)与点A1(5,b)关于y轴对称,则a= ,b= .
例题讲解
随堂演练
1.在平面直角坐标系中,点A(1,2)的横坐标乘-1,纵坐标不变,得到点A′,则点A与点A′的位置关系是( )
A.关于x轴对称
B.关于y轴对称
C.将点A沿y轴负方向平移4个单位长度得到点A′
D.将点A沿x轴负方向平移1个单位长度得到点A′
B
2.下列各组点关于y轴对称的是( )
A.(0,10)与(0,-10)
B.(-3,-2)与(3,-2)
C.(-3,-2)与(3,2)
D.(-3,-2)与(-3,2)
B
3、如图,△ABC与△DFE关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为( )
A.(-6,4)
B.(4,6)
C.(-2,1)
D.(6,2)
B
(1)点A的坐标为 ,点B的坐标为 ;
(2)在x轴上有一条河,现准备在河流边上建一个抽水站P,使得抽水站P到A、B两个村庄的距离之和最小,请作出点P的位置,并求此时距离之和的最小值.
4、已知:A,B两个村庄在如图所示的直角坐标系中,那么:
作出点B关于x轴的对称点B1,连接AB1,与x轴的交点就是抽水站P的位置,理由如下:
连接PB,则PB=PB1,有AP+PB=AB+PB1;
根据两点之间线段最短知:AP+PB的最小值即为线段AB1的长度。于是,问题转化为求线段AB1的长度.
分别过点A、B1作x轴、y轴的垂线,交点为C,得到Rt△AB1C.
显然AC=3,B1C=4,根据勾股定理可得AB1=5.
于是,AP+PB的最小值为5.
课堂小结
关于轴对称的两个点的坐标特征
图形的点的坐标变化与图形的变化