五年级下册数学教案-6.6 圆的面积苏教版

文档属性

名称 五年级下册数学教案-6.6 圆的面积苏教版
格式 doc
文件大小 22.0KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2021-07-16 11:55:03

图片预览

文档简介

《圆的面积》教学设计
教学目标:
1、理解圆的面积的含义,通过猜测,操作、验证、归纳,使学生经历圆面积计算公式的推导过程。
2、能正确地应用圆面积的计算公式进行圆面积的计算,并能解答有关圆面积的实际问题。
3、引导学生进一步体会“转化”的数学思想,初步了解极限思想。
教学重点:
圆面积的计算公式的推导与计算。
教学难点:
利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。
教学准备:
课件,圆16等分和32等分的模型。
教学过程:
一、情境激趣,导入新知
1、课件出示斑马图。
提问:你看到了什么?(斑马走了一圈。)
能求出斑马走了多少米吗?需要知道什么条件?
如果r=2米,圆的周长是多少米?
如果斑马走了半圈,你能用式子表示吗?
2、如果斑马将这个圆形草地里的草吃完了,你知道它吃了多少平方米的草吗?实际上是求什么?(求圆的面积)
说明:圆所占平面的大小叫做圆的面积。
好,今天就让我们一起来研究:“怎样计算圆的面积

(板书课题:圆的面积)
二、转化思想,推导公式
1、渗透“转化”的教学思想和方法。
(1)思考:我们是如何推导平行四边形、三角形、梯形的面积公式的?
(根据学生的回答,课件相机呈现推导过程。)
(2)
我们可以把要学习的图形用剪拼法,把它转化成学过的图形来计算面积,那么我们可不可以用同样的方法把圆分一分,剪一剪,拼一拼,形成我们学过的图形呢?
A、师示范演示:我把一个圆平均分成8份,并剪成2个半圆,重新拼成一个近似的平行四边形。
B、以小组为单位,尝试把圆平均分成16份,仿照老师的拼法拼一拼。
提问:拼成的图形像个什么图形?
C、初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比将会有怎样的变化?
继续剪一剪、拼一拼,验证自己的想法。
D、进一步想象:如果继续把圆平均分成64份、128份、256份……时,也用类似的方法拼一拼,闭上眼睛想一想,随着圆平均分的份数增加,拼成的图形越来越接近一个什么图形?(长方形)如果无限分下去,那么就可以拼组成一个长方形。
2、推导公式。
(1)拼成的长方形与原来的圆有什么联系?在小组内交流。
交流中借助图示小结:
①长方形的面积与圆的面积相等;
②长方形的宽是圆的半径;
③长方形的长是圆周长的一半。
(2)提问:如果圆的半径是r,长方形的长和宽各应怎样表示?
重点引导学生理解==r
(3)根据长方形面积的计算方法,怎样计算圆的面积?
根据学生的回答,完成形如第105页上的板书,并得出公式:S=πr2
追问:知道了圆的什么条件,就可以计算圆的面积呢?如果知道圆的直径或圆的周长行不行?
3、教学例9。
(1)谈话导入:在日常生活中,经常会遇到与圆面积计算有关的实际问题。
(2)出示例9.
指名读题。
提问:自动旋转喷水器旋转一周后喷灌的地方是什么图形?最远喷水距离实际上是圆的什么?
学生尝试列式解答,并集体订正。
三、活用新知,扎实练习
1、完成练一练。
2、完成练习二十第1题。
3、填空:
(1)要画一个周长为18.84厘米的圆,圆规两脚间应叉开(
)厘米,面积是(
)平方厘米。
(2)将一个圆平均剪拼成一个近似的长方形,这个长方形的宽是2厘米,长方形的长是(
)厘米,这个圆的面积是(
)平方厘米。
4、在周长为40厘米的正方形纸板上剪下一个最大的圆,这个圆的面积是多少?
5、教师小结:求圆的面积必须知道圆的半径,如果已知半径,可以利用公式直接求出的圆面积,但已知圆的直径或周长,应先求出半径,再求圆的面积。
四、全课总结
同学们,这节课你有什么收获?
课后,大家可以再寻找生活中的一些圆的物品,自己想办法算出它们的面积
板书设计:
圆的面积
长方形的面积
=

×

圆的面积
=
圆周长的一半
×
半径
s=
πr
×
r
s=πr?
教学反思:
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
一、以旧引新,渗透“转化”思想
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,通过对比复面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2-3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越行四边形或长方形。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的形成
通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的形成。
四、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。