2021年北师大版九年级数学上册《1.1菱形的性质与判定》常考热点优生辅导训练(附答案)
1.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
A.3cm B.4cm C.4.8cm D.5cm
2.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为( )
A.8 B.2 C.4 D.2
3.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为( )
A.2 B.2 C.6 D.8
4.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC﹣AD),其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
5.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是( )
A.(4,5) B.(5,4) C.(4,4) D.(5,3)
6.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC,且DE=AC,连接CE、OE,连接AE,交OD于点F.若AB=2,∠ABC=60°,则AE的长为( )
A. B. C. D.
7.如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A.35° B.45° C.50° D.55°
8.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;
其中正确结论的是( )
A.①②③ B.①②④ C.①③④ D.②③④
9.如图,在菱形ABCD中,AB=13cm,AC=24cm,E,F分别是CD和BC的中点,连接EF并延长与AB的延长线相交于点G,则EG的长度为 cm.
10.如图,在菱形ABCD中,∠BAD=60°,AB的垂直平分线交对角线AC于点F,垂足为E,若AF=1,则菱形ABCD的面积等于 .
11.如图,菱形ABCD的对角线AC、BC相交于点O,E、F分别是AB、BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为 .
12.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO= 度.
13.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED= .
14.如图,平行四边形ABCD的对角线AC、BD交于点O,分别过点C、D作CF∥BD,DF∥AC,连接BF交AC于点E.
(1)求证:△FCE≌△BOE;
(2)当△ADC满足什么条件时,四边形OCFD为菱形?请说明理由.
15.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,且AF=DC,连接CF.
(1)求证:D是BC的中点;
(2)若∠BAC=90°,求证:四边形ADCF是菱形.
16.已知:如图,?ABCD的两条对角线相交于点O,E是BO的中点.过点B作AC的平行线BF,交CE的延长线于点F,连接AF.
(1)求证:△FBE≌△COE;
(2)将?ABCD添加一个条件,使四边形AFBO是菱形,并说明理由.
17.在Rt△ABC中∠B=90°,∠ACB=30°,∠BAC的平分线AD交BC于D,过点D作DE⊥AC于E,过A作AF∥BC交DE延长线于点F,连接FC
求证:(1)△AEF≌△CED;
(2)四边形ADCF是菱形.
18.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.
19.如图,在?ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.
(1)求证:△ADE≌△CBF;
(2)若∠G=90°,求证:四边形DEBF是菱形.
20.如图,已知在四边形ABCD中,AD∥BC,点E为BC中点,BD⊥DC,EA平分∠DEB.
(1)求证:AE=DC;
(2)求证:四边形ABED是菱形.
参考答案
1.解:∵四边形ABCD是菱形,
∴BD⊥AC,
∵BD=6cm,S菱形ABCD═AC×BD=24cm2,
∴AC=8cm,
∵AE⊥BC,
∴∠AEC=90°,
∴OE=AC=4cm,故选:B.
2.解:如图连接BD.
∵四边形ABCD是菱形,
∴AD=AB=8,
∵∠A=60°,
∴△ABD是等边三角形,
∴BA=AD=8,
∵PE=ED,PF=FB,
∴EF=BD=4.故选:C.
3.解:∵四边形ABCD是菱形,
∴OA=OC,OB=OD=BD,BD⊥AC,
∴BD=16,
∵S菱形ABCD═AC×BD=96,
∴AC=12,
∵CE⊥AD,
∴∠AEC=90°,
∴OE=AC=6,故选:C.
4.解:∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是菱形,正确;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN=BC,GN=AD,
∴EG=(BC﹣AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.
综上所述,①②③共3个正确.故选:C.
5.解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,
∴AB=5,
∴DO=4,
∴点C的坐标是:(5,4).故选:B.
6.解:在菱形ABCD中,OC=AC,AC⊥BD,
∴DE=OC,
∵DE∥AC,
∴四边形OCED是平行四边形,
∵AC⊥BD,
∴平行四边形OCED是矩形,
∵在菱形ABCD中,∠ABC=60°,
∴△ABC为等边三角形,
∴AD=AB=AC=2,OA=AC=1,
在矩形OCED中,由勾股定理得:CE=OD===,
在Rt△ACE中,由勾股定理得:AE===;故选:C.
7.解:延长EF交DC的延长线于H点.
∵在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,
∴∠B=80°,BE=BF.
∴∠BEF=(180°﹣80°)÷2=50°.
∵AB∥DC,∴∠FHC=∠BEF=50°.
又∵BF=FC,∠B=∠FCH,
∴△BEF≌△CHF.
∴EF=FH.
∵EP⊥DC,
∴∠EPH=90°.
∴FP=FH,则∠FPC=∠FHP=∠BEF=50°.故选:C.
8.解:∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB,
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正确,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中点,
∴HF=BC,
∵BC=AB,AB=BD,
∴HF=BD,故④说法正确;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∵AE≠EF,
∴四边形ADFE不是菱形;
故②说法不正确;
∴AG=AF,
∴AG=AB,
∵AD=AB,
则AD=4AG,故③说法正确,
故选:C.
9.解:连接BD,交AC于点O,如图:
∵菱形ABCD的边长为13cm,点E、F分别是边CD、BC的中点,
∴AB∥CD,AB=BC=CD=DA=13cm,EF∥BD,
∵AC、BD是菱形的对角线,AC=24cm,
∴AC⊥BD,AO=CO=12cm,OB=OD,
又∵AB∥CD,EF∥BD,
∴DE∥BG,BD∥EG,
∴四边形BDEG是平行四边形,
∴BD=EG,
∵OB=OD===5(cm),
∴BD=2OD=10(cm),
∴EG=BD=10(cm),
故答案为:10.
10.解:连接DB,
∵AB的垂直平分线交对角线AC于点F,
∴∠AEF=90°,AB=2AE,
∵菱形ABCD中,∠BAD=60°,
∴∠FAE=30°,
∴AE=,
∵菱形ABCD中,∠BAD=60°,
∴AD=AB,
∴△ADB是等边三角形,
∴DB=AB=2AE=,
∴AC=2AO=,
∴菱形ABCD的面积=,
故答案为:
11.解:∵四边形ABCD是菱形,
∴AB=BC=CD=AD,AC⊥BD,OA=AC,OB=BD=2,
∴∠AOB=90°,
∵E、F分别是AB、BC边上的中点,
∴EF是△ABC的中位线,
∴AC=2EF=2,
∴OA=,
∴AB===,
∴菱形ABCD的周长=4AB=4;
故答案为:4.
12.解:∵四边形ABCD是菱形,
∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH=BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO==25°,
故答案为:25.
13.解:
∵四边形ABCD是菱形,
∴DO=OB,
∵DE⊥BC于E,
∴OE为直角三角形BED斜边上的中线,
∴OE=BD,
∴OB=OE,
∴∠OBE=∠OEB,
∵∠ABC=140°,
∴∠OBE=70°,
∴∠OED=90°﹣70°=20°,
故答案为:20°.
14.(1)证明:∵CF∥BD,DF∥AC,
∴四边形OCFD是平行四边形,∠OBE=∠CFE,
∴OD=CF,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OB=CF,在
△FCE和△BOE中,,
∴△FCE≌△BOE(AAS);
(2)解:当△ADC满足∠ADC=90°时,四边形OCFD为菱形;理由如下:
∵∠ADC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OC=OD,
∴四边形OCFD为菱形.
15.(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEB中,,
∴△AEF≌△DEB(AAS),
∴AF=DB,
∵AF=DC,
∴DB=DC,即D是BC的中点;
(2)证明:∵AF∥DC,AF=DC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,DB=DC,
∴AD=BC=DC,
∴四边形ADCF是菱形.
16.(1)证明:如图,取BC的中点G,连接EG.
∵E是BO的中点,
∴BE=OE,
又∵BF∥AC,
∴∠FBE=∠COE.
在△FBE△COE中,,
∴△FBE≌△COE(AAS);
(2)解:当AC=BD时,四边形AFBO是菱形.理由如下:
∵AC=BD,
∴平行四边形ABCD是矩形,
∴OA=OC=OB=OD,
∴平行四边形AFBO是菱形.
17.(1)证明:∵AF∥CD,
∴∠AFE=∠CDE,
在△AFE和△CDE中,
,
∴△AEF≌△CED(AAS).
(2)∵在Rt△ABC中∠B=90°,∠ACB=30°,
∴AB=AC.
由(1)知,△AEF≌△CED,则AF=CD,
∵AF∥CD,
∴四边形ADCF是平行四边形.
由题意知,AE=AB,∠EAD=∠BAD,AD=AD,
∴△AED≌△ABD.
∴∠AED=∠B=90°,即DF⊥AC.
∴四边形ADCF是菱形.
18.解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴?ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,
∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
19.证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,∠DAE=∠C,
∵点E、F分别是AB、CD的中点,
∴AE=AB,CF=CD,
∴AE=CF,
在△ADE和△CBF中,
∵,
∴△ADE≌△CBF(SAS);
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,
∴∠ADB=90°,
∵DF∥BE,DF=BE,
∴四边形DEBF是平行四边形,
在Rt△ADB中,
∵E为AB的中点,
∴BE=DE,
∴四边形DEBF是菱形.
20.证明:(1)∵E为BC中点,BD⊥DC,
∴DE=BC=BE=CE,
∵EA平分∠DEB,
∴∠AEB=∠AED,
∵AD∥BC,
∴AD∥CE,
∴∠DAE=∠AEB,AD∥CE,
∴∠DAE=∠AED,
∴AD=DE,
∴AD=CE,
∴四边形AECD平行四边形,
∴AE=DC;
(2)由(1)知,四边形AECD平行四边形,
∴AD∥CE,AD=CE,
∴AD∥BE,
由(1)知,DE=BE=CE,
∴AD=BE=DE,
∴四边形ABED是平行四边形,
∴四边形ABED是菱形.