首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
人教版(2024)
七年级下册
第九章 不等式与不等式组
本章复习与测试
第九章《不等式与不等式组》复习与小结
文档属性
名称
第九章《不等式与不等式组》复习与小结
格式
zip
文件大小
45.8KB
资源类型
教案
版本资源
人教版(新课程标准)
科目
数学
更新时间
2012-05-17 16:05:12
点击下载
图片预览
1
2
文档简介
第九章《不等式与不等式组》复习与小结
一、知识梳理:
注意:一般由两个一元一次不等式组成的不等式组有四种基本类型,它们的解
集、数轴表示如下表:(约定a
一元一次不等式组 解集 图示 口诀
x>b 同大取大
x
a
无解 大大小小找不到(无解)
二、典例解析:
例1. 若不等式组的正整数解只有2,求的整数值.
解:解得
又∵原不等式组只有正整数解2.
由图5-1,应有.
∴∴
例2.若方程组的解x,y满足2
A.7
答案:A 点拨: 由(1)+(2)得x+y=.
因为2
例3.一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子数少于3个,问共有几个儿童,分了多少个橘子?
设有x个儿童,则橘子有4x+9个.
解:方法1:设共有x个儿童,则共有(4x+9)个橘子,
依题意,得0≤4x+9-6(x-1)<3
解这个不等式组,得6
因为x为整数,所以x取7.所以4x+9=4×7+9=37.
答:共有7个儿童,分了37个橘子.
方法2:设法不变,依题意,得4< 6x-(4x+9)<6
方法3:分类讨论
设共有x个儿童,有y个橘子
①当最后一个儿童分1个时,得
②当最后一个儿童分2个时,得
解①得 解②得(不合题意舍去)
答:共有7个儿童,分了37个橘子.方法3是枚举法,当情况比较多时,枚举法难以实现。
三、反馈练习
1. 已知:a<b,下列四个不等式中错误的是 ( )
A.4a<4b B.a+4<b+4 C.4-a<4-b D.a-b<0
2. 已知:m=2x-5,n=-2x+7,如果m<n,则x的取值范围是 ( )
A.x>3 B.x<3 C.x>-3 D.x<-3
3. 如果两个不等式的解集相同,那么这两个不等式叫做同解不等式.下列两个不等式是同解不等式的是 ( )
A.4x<48与x>12 B.3x-9≤0与x≥3
C.2x-7<6x与4x>-7 D.x>3与x<-2
4. 设x为整数,且满足不等式-2x+3<4x-1和3x―2<―x+3,则x等于 ( )
A.0 B.1 C.2 D.3
5. 关于x的方程3x-2a=6的解是非负数,那么a满足的条件是 ( )
A.a>-3 B.a≥3 C.a≤-3 D.a≥-3
6. 用120根火柴,首尾相接围成三条边互不相等的三角形,已知最大边的长是最小边的长的3倍,则最小边用了 ( )
A.20根火柴 B.18或19根火柴 C.19根火柴 D.19或20根火柴
7. 某种毛巾原零售价每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠销售办法,第一种:“两条按原价,其余按七折优惠”;第二种:“全部按原价的八折优惠”,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买毛巾 ( )
A.4条 B.5条 C.6条 D.7条
8. 3x与9的差是非负数,用不等式表示为 .
9. 关于x的不等式(a+2)x>3的解集为x<,则a的取值范围是 .
10.若代数式+1的值不小于-1的值,则x的取值范围是 .
11.已知关于x的不等式组的解集为0<x<2,那么a-b的值等于 .
12.某种服装进价80元,售价120元,但销量较小.为了促销,商场决定打折销售,若保证利润率不低于20%,那么至多可打 折.
13.解下列不等式,并把解集表示在数轴上.
(1); (2)≤.
14.解下列不等式组:
(1) (2)(求整数解)
15.若关于x,y的二元一次方程组的解都是正数,求m的取值范围.
16.乘某城市的一种出租汽车起步价是10元(即行驶路程4千米以内都需付10元车费),达到或超过4千米,每增加1千米加价1.8元(不足1千米部分按1千米计费).现在某人乘这种出租车从甲地到乙地,支付车费22.6元,问从甲地到乙地的路程大约是多少千米?
17.胜利电器商店计划购进一批同种型号的挂式空调和电风扇,若购进8台空调和20台电风扇,需资金17 400元,若购进10台空调和30台电风扇,需资金22 500元.
(1)求挂式空调和电风扇每台的采购价各是多少元;
(2)该经营业主计划进这两种电器共70台,而可用于购买这两种电器的资金不超过30 000元,根据市场调研,销售一台这样的空调可获利200元,销售一台这样的电风扇可获利30元.该经营业主希望当这两种电器销售完时,所获得的利润不少于3 500元.试问该经营业主有哪几种进货方案?哪种方案获利最大?最大利润是多少?
实际问题
(包含不等关系)
数学问题
(一元一次方程式或
一元一次方程式组)
解不等式(组)
数学问题的解
(一元一次不等式(组)的解集)
实际问题的答案
数学思想方法:类比思想)
(类比解一元一次方程的方法,
解一元一次不等式(组))
检验
设未知数、列不等式
图5-1
点击下载
同课章节目录
第五章 相交线与平行线
5.1 相交线
5.2 平行线及其判定
5.3 平行线的性质
5.4 平移
第六章 实数
6.1 平方根
6.2 立方根
6.3 实数
第七章 平面直角坐标系
7.1 平面直角坐标系
7.2 坐标方法的简单应用
第八章 二元一次方程组
8.1 二元一次方程组
8.2 消元---解二元一次方程组
8.3 实际问题与二元一次方程组
8.4 三元一次方程组的解法
第九章 不等式与不等式组
9.1 不等式
9.2 一元一次不等式
9.3 一元一次不等式组
第十章 数据的收集、整理与描述
10.1 统计调查
10.2 直方图
10.3 课题学习从数据谈节水
点击下载
VIP下载